

দ্বান্থাঞ্জব হেন্ত্রুযা যাঞ্জন। র্লাবরা নের্বায় রূমা প্রবাদ ক্রিন্যা নির্বায় রূমা একা দ্বেন্থা

Royal Government of Bhutan Ministry of Agriculture and Forests Department of Forests and Park Services

SPECIES SPECIFIC VOLUME EQUATION TO ESTIMATE MERCHANTABLE VOLUME

Pinus roxburghii

Forest Resources Management Division Department of Forest and Park Services Ministry of Agriculture and Forests

2018

Printed at United Printing Press

Species specific volume equation to estimate merchantable volume

Pinus roxburghii

December,2018

Table of Contents

2. Introduction 2 3. Volume Calculation 3 4. The Dataset used for modeling volume of Pinus roxburghii 4 4.1 Summary descriptive statistics of Pinus roxburghii dataset 4 5. Fitting the models 5 6. Summary Plots 6 7. Models and results 7 7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor, with varEixed 8 7.3 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varEixed 8 7.3 Model 3 - Volume with diameter at breast height (DBH) as predictor, with varEixed 8 7.4 Model 4 - Volume with basal area (BA) as predictor, with varFixed 10 7.5 Model 5 - Volume with basal area (BA) as predictor, with varFower 11 7.6 Model 7 Volume with basal area (BA) as predictor, with varFower 13 7.8 Model 8 – Volume with square of diameter at breast height 'Beight (DBH2H) as predictor, with varFower 14 7.9 Model 10 – Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFower 16 7.11 Model 10 – Volume with square of diameter at breast height * height (DBH2H) as predictor, with var	1.	Summary1
3. Volume Calculation 3 4. The Dataset used for modeling volume of Pinus roxburghii 4 4.1 Summary descriptive statistics of Pinus roxburghii dataset 4 5. Fitting the models 5 6. Summary Plots 6 7. Models and results 7 7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor, with varFixed 8 7.3 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed 8 7.4 Model 3 - Volume with diameter at breast height (DBH) as predictor, with varFower 9 7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower 10 7.5 Model 5 - Volume with basal area (BA) as predictor, with varFixed 11 7.6 Model 7 Volume with basal area (BA) as predictor, with varFixed 12 7.7 Model 7 Volume with basal area (BA) as predictor, with varFixed 13 7.8 Model 8 - Volume with square of diameter at breast height 'Aeight (DBH2H) as predictor, with varConstPower 14 7.9 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower 15 7.10 Model 10 - Volume w	2.	Introduction2
4. The Dataset used for modeling volume of Pinus roxburghii 4 4.1 Summary descriptive statistics of Pinus roxburghii dataset	3.	Volume Calculation3
4.1 Summary descriptive statistics of Pinus roxburghii dataset 4 5. Fitting the models 5 6. Summary Plots 6 7. Models and results 7 7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor 7 7.2 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed 8 7.3 Model 3 - Volume with diameter at breast height (DBH) as predictor, with varPower. 9 7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower 10 7.5 Model 5 - Volume with basal area (BA) as predictor, with varFixed 12 7.7 Model 7 Volume with basal area (BA) as predictor, with varFixed 12 7.7 Model 7 Volume with basal area (BA) as predictor, with varPower 13 7.8 Model 8 - Volume with basal area (BA) as predictor, with varPower 14 7.9 Model 9 - Volume with square of diameter at breast height * height (DBH2H) as predictor. 16 7.11 Model 11 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed 16 7.11 Model 12 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFower 17 7.12 Model 12 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFower 16 7.13 Model 13 - Volume with square	4.	The Dataset used for modeling volume of Pinus roxburghii4
5. <i>Fitting the models</i> 5 6. <i>Summary Plots</i> 6 7. Models and results 7 7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor, with varFixed 8 7.3 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed 8 7.3 Model 3 - Volume with diameter at breast height (DBH) as predictor, with varPower 9 7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varPower 11 7.6 Model 5 - Volume with basal area (BA) as predictor, with varFixed 12 7.7 Model 6 - Volume with basal area (BA) as predictor, with varPower 13 7.8 Model 7 Volume with basal area (BA) as predictor, with varConstPower 14 7.9 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed 16 7.11 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower 17 7.12 Model 11 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed 16 7.11 Model 11 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varConstPower 17 7.12 M		4.1 Summary descriptive statistics of <i>Pinus roxburghii</i> dataset4
6. Summary Plots	5.	<i>Fitting the models</i>
7. Models and results 7 7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor, with varFixed 7 7.2 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed 8 7.3 Model 3 - Volume with diameter at breast height (DBH) as predictor, with varPower. 9 7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower 11 7.6 Model 5 - Volume with basal area (BA) as predictor, with varFixed 12 7.7 Model 6 - Volume with basal area (BA) as predictor, with varPower 13 7.8 Model 8 - Volume with basal area (BA) as predictor, with varPower 14 7.9 Model 9 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed 16 7.11 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower 17 7.10 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower 17 7.11 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower 17 7.12 Model 12 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varConstPower 18 7.13 <t< td=""><td>6.</td><td>Summary Plots</td></t<>	6.	Summary Plots
7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor. 7 7.2 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed 8 7.3 Model 3 - Volume with diameter at breast height (DBH) as predictor, with varPower. 9 7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower. 10 7.5 Model 5 - Volume with basal area (BA) as predictor. 11 7.6 Model 6 - Volume with basal area (BA) as predictor, with varFixed. 12 7.7 Model 7 Volume with basal area (BA) as predictor, with varPower. 13 7.8 Model 8 - Volume with basal area (BA) as predictor, with varConstPower. 14 7.9 Model 9 - Volume with square of diameter at breast height * height (DBH2H) as predictor. 15 7.10 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed. 16 7.11 Model 11 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower. 17 7.12 Model 12 - Volume with basal area * height (BAH) as predictor. 19 7.14 Model 14 - Volume with basal area * height (BAH) as predictor, with varFower. 20 7.15 Model 15 - Volume with basal area * height (BAH) as predictor, with varConstPower. 21 7.16 Model 16 - Volume with basal area * height (BAH) as predictor, with varConstPower. 21	7.	Models and results7
7.2 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed 8 7.3 Model 3 - Volume with diameter at breast height (DBH) as predictor, with varConstPower10 7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower11 7.6 Model 5 - Volume with basal area (BA) as predictor, with varFixed 12 7.7 Model 7 Volume with basal area (BA) as predictor, with varFower		7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor7
7.3 Model 3- Volume with diameter at breast height (DBH) as predictor, with varPower		7.2 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed8
7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower10 7.5 Model 5 - Volume with basal area (BA) as predictor, with varFixed		7.3 Model 3- Volume with diameter at breast height (DBH) as predictor, with varPower9
7.5 Model 5 - Volume with basal area (BA) as predictor. 11 7.6 Model 6 - Volume with basal area (BA) as predictor, with varFixed. 12 7.7 Model 7 Volume with basal area (BA) as predictor, with varPower. 13 7.8 Model 8 - Volume with basal area (BA) as predictor, with varPower. 14 7.9 Model 9 - Volume with square of diameter at breast height * height (DBH2H) as predictor. 15 7.10 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed. 16 7.11 Model 11- Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower. 17 7.12 Model 12 -Volume with square of diameter at breast height * height (DBH2H) as predictor, with varConstPower 18 7.13 Model 13 - Volume with basal area * height (BAH) as predictor, with varFixed 20 7.15 Model 15- Volume with basal area * height (BAH) as predictor, with varConstPower 21 7.16 Model 16 - Volume with basal area * height (BAH) as predictor, with varConstPower 22 8. Model evaluation using AIC and BIC values 23 9. Selected Models 25 10. Demonstration of use of the selected best fit model 29 13. Conclusion. 30 14. Acknowledgement. 31 15. References 32		7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower10
7.6 Model 6 - Volume with basal area (BA) as predictor, with varFixed		7.5 Model 5 - Volume with basal area (BA) as predictor11
7.7 Model 7 Volume with basal area (BA) as predictor, with varPower. 13 7.8 Model 8 – Volume with basal area (BA) as predictor, with varConstPower. 14 7.9 Model 9 – Volume with square of diameter at breast height * height (DBH2H) as predictor. 15 7.10 Model 10 – Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed. 16 7.11 Model 11– Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower. 17 7.12 Model 12 – Volume with square of diameter at breast height * height (DBH2H) as predictor, with varConstPower 18 7.13 Model 13 – Volume with basal area * height (BAH) as predictor, with varFixed 20 7.15 Model 14 – Volume with basal area * height (BAH) as predictor, with varFower. 21 7.16 Model 15– Volume with basal area * height (BAH) as predictor, with varFower. 21 7.16 Model 16 – Volume with basal area * height (BAH) as predictor, with varConstPower. 22 8. Model evaluation using AIC and BIC values. 23 9. Selected Models 25 10. Demonstration of use of the selected best fit model 29 13. Conclusion. 30 14. Acknowledgement. 31 15. References 32		7.6 Model 6 - Volume with basal area (BA) as predictor, with varFixed12
7.8 Model 8 – Volume with basal area (BA) as predictor, with varConstPower		7.7 Model 7 Volume with basal area (BA) as predictor, with varPower13
7.9 Model 9 – Volume with square of diameter at breast height * height (DBH2H) as predictor15 7.10 Model 10 – Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed		7.8 Model 8 – Volume with basal area (BA) as predictor, with varConstPower14
7.10 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed		7.9 Model 9 - Volume with square of diameter at breast height * height (DBH2H) as predictor15
7.11 Model 11– Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower		7.10 Model 10 – Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed
7.12 Model 12 –Volume with square of diameter at breast height * height (DBH2H) as predictor, with varConstPower187.13 Model 13 – Volume with basal area * height (BAH) as predictor.197.14 Model 14 – Volume with basal area * height (BAH) as predictor, with varFixed207.15 Model 15– Volume with basal area * height (BAH) as predictor, with varPower.217.16 Model 16 – Volume with basal area * height (BAH) as predictor, with varConstPower.228. Model evaluation using AIC and BIC values239. Selected Models2510. Demonstration of use of the selected best fit model2511. Model Performance2812. Limitations of the model.2913. Conclusion3014. Acknowledgement.3115. References32		7.11 Model 11– Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower
7.13 Model 13 – Volume with basal area * height (BAH) as predictor.197.14 Model 14 – Volume with basal area * height (BAH) as predictor, with varFixed207.15 Model 15 – Volume with basal area * height (BAH) as predictor, with varPower.217.16 Model 16 – Volume with basal area * height (BAH) as predictor, with varConstPower228. Model evaluation using AIC and BIC values239. Selected Models2510. Demonstration of use of the selected best fit model2511. Model Performance2812. Limitations of the model2913. Conclusion3014. Acknowledgement3115. References32		7.12 Model 12 –Volume with square of diameter at breast height * height (DBH2H) as predictor, with varConstPower
7.14 Model 14 – Volume with basal area * height (BAH) as predictor, with varFixed		7.13 Model 13 – Volume with basal area * height (BAH) as predictor
7.15 Model 15– Volume with basal area * height (BAH) as predictor, with varPower.217.16 Model 16 – Volume with basal area * height (BAH) as predictor, with varConstPower228. Model evaluation using AIC and BIC values239. Selected Models2510. Demonstration of use of the selected best fit model2511. Model Performance2812. Limitations of the model2913. Conclusion3014. Acknowledgement3115. References32		7.14 Model 14 – Volume with basal area * height (BAH) as predictor, with varFixed20
7.16 Model 16 – Volume with basal area * height (BAH) as predictor, with varConstPower		7.15 Model 15- Volume with basal area * height (BAH) as predictor, with varPower21
 8. Model evaluation using AIC and BIC values		7.16 Model 16 - Volume with basal area * height (BAH) as predictor, with varConstPower22
9.Selected Models2510.Demonstration of use of the selected best fit model2511.Model Performance2812.Limitations of the model2913.Conclusion3014.Acknowledgement3115.References32	8.	Model evaluation using AIC and BIC values23
10.Demonstration of use of the selected best fit model	<i>9</i> .	Selected Models25
11.Model Performance.2812.Limitations of the model.2913.Conclusion.3014.Acknowledgement.3115.References.32	10	D. Demonstration of use of the selected best fit model
12.Limitations of the model	11	1. Model Performance
13. Conclusion	12	2. Limitations of the model
14. Acknowledgement	13	3. Conclusion
15. References	14	4. Acknowledgement
	15	5. References
16. Annexure – Dataset for Pinus roxburghii	16	6. Annexure – Dataset for Pinus roxburghii

1. Summary

The volume equation developed in this study will predict the merchantable volume of *Pinus roxburghii*. The merchantability standard for volume calculation adopted for this study is 10 cm and above diameter at breast height (dbh) and top diameter measured up to 10 cm over bark.

A total of 16 models were fitted. First 4 models were fitted with volume as a function of diameter at breast height (DBH), while models 5 - 8 were fitted with basal area (BA) as the predictor variable. With product of squared diameter at breast height and height (DBH2H) as predictor variable, 4 models, namely the models 9 - 12 were fitted. The last four models, 13 -16 were fitted with product of basal area and height (BAH) as the predictor.

The initial plots of response variable (volume) and predictor variables (DBH, BA, DBH2H and BAH) clearly indicated presence of heteroscedasticity, which has been modeled using variance functions (varFixed, varPower and varConstPower) in gls () function of nlme package.

Of the sixteen, two models viz model 7(fitted without height as predictor) and model 15 (fitted with height as predictor) with lowest values of AIC and BIC have been selected as the best fit models for *Pinus roxburghii*. The model 7 had AIC and BIC values of 9 and 17 respectively, while the model 15 had AIC and BIC values of 11 and 19 respectively. Lower the AIC and BIC values, better the fit of the model.

The performance of the selected models was assessed by comparing the actual volume with the volumes predicted by two selected models for each tree. From the assessment, we observed that the model 15 which uses height outperforms the model 7.

2. Introduction

The volume equations, developed during pre-investment survey (PIS) carried out between 1974-8 predict total tree volume, and not the predict merchantable volume of trees. The recent change of policy of the Department of Forests and Park Services to allot timber for rural house construction in the form of log volume instead of allotting by number of trees as was once practiced, has necessitated development of merchantable log volume equation.

Therefore, standards of merchantability adopted for this study to develop merchantable log volume equation are trees of 10 cm and above diameter at breast height (dbh) and the sections up to 10 cm top diameter over the bark.

As was done for PIS exercise to develop volume equation, this study ignores/does not consider the volume of foliage and branches for the purpose of calculating the merchantable volume. This decision stems from the objective, which is to estimate merchantable log volume. Moreover, branches are rarely used as timber (at least in Bhutan) and are mostly used for firewood.

The sample trees for this study have been felled as part of biomass equation development field work. The data protocol for biomass equation development required collecting a minimum of 8 trees each from four regions of Bhutan namely, eastern, eastern central, western and western central. However, 40 trees in total have been felled for *Pinus roxburghii* from three regions namely; eastern, east-central and western-central regions.

The trees were felled at 0.3 m height from the ground at which the diameter was measured and recorded. After felling diameter was measured at 0.7 m from 0.3 m height (essentially making 1 m height, i.e 0.3 m + 0.7 m = 1 m). Thereafter, at every meter length, the diameter was measured and recorded, thus making many 1 m length sections of log. As mentioned above the smallest top diameter considered for merchantable log volume calculation was up to 10 cm diameter over bark. Top sections below 10 cm diameter have been discarded.

3. Volume Calculation

Trees after felling are converted into different sizes of sections depending on the requirement and demand. Sections with length of 8 or more feet long are called logs and shorter ones are called sticks or bolts (Avery and Burkhart, 1994). The scaling or measuring the volume of the section is done by multiplying the length with the cross-sectional area of the section. Although they rarely form true circles, they are assumed so for the purpose of calculating cross sectional area in meter square, which is;

Cross sectional area (A) =
$$A = \pi r^2 = \frac{\pi D^2}{4*10000}$$
 (1)

Where \mathbf{r} is radius in meters and \mathbf{D} is diameter at breast height in centimeters.

From the ground level to 0.3 m height (height at which sample tree has been cut) is section I, while 0.3 m to 0.7 m is section II. The subsequent sections of 1 m length each are numbered III, IV and so on. The last section is the terminal section, whose length is equal to or less than 1 m. As was adopted for PIS, in this study too the branch volumes are ignored assuming that rarely branches yield merchantable timber.

The diameter at zero height (ground level) for stump wasn't measured in the field (for those sample trees for which volume data was collected during biomass equation development field work) and therefore, calculated based on diameter reading at 0.3 m height. Therefore, diameter at zero height was calculated as 10% more than diameter at 0.3 m height, which is;

$$D_{(\text{ground})} = D_{(0.3 \text{ m})} + 10\% * D_{(0.3 \text{ m})}$$
(2)

Where;

 $D_{(ground)}$ is diameter in centimeter of tree at ground level $D_{(0.3 m)}$ is diameter in centimeter of tree at 0.3 m height

For instance, if D (0.3 m) was 70 cm, the D(ground) is calculated as;

$$D_{(ground)} = 70 \text{ cm} + 10\% \text{ of } 70 \text{ cm}$$

= 70 + 7
= 77 cm

The most commonly used formulae for calculating volume are the Huber, Newton and Smalian's formulae (Sadiq, 2006, and Goulding, 1979). Of the three commonly used volume calculation approaches or formulae, the Smalian's formula has been used to calculate volume (in m³) for this study, as under;

Section volume
$$(V_s) = \frac{A+a}{2} * L$$
 (3)

Where A = Cross sectional area in m² at large end of the section a = Cross sectional area in m² at small end of the section L = Length of the section in meter

Smalian's formula is the easiest and least expensive to apply and therefore applied to get volume for each section of the sample trees. However, for the terminal section, the following formula was used to calculate the volume;

Terminal section volume
$$(V_t) = \frac{A}{3} * L$$
 (4)

The volume for sections and terminal section for individual trees were then summed to obtain the total volume for each individual sample tree, which is;

Volume of tree (V) =
$$\sum_{s=1}^{n} V_s + V_t$$
 (5)

After obtaining individual tree volume (Volume.m3), it was then tabulated against the variables - height in meter (Height.m) and the diameter at breast height in centimeter (DBH.cm).

4. The Dataset used for modeling volume of Pinus roxburghii

A total of 40 trees have been fell and collected data for developing volume equations for *Pinus roxburghii* from3 regions, namely eastern, eastern central and western central. Summary of the dataset is presented below, while the detailed one is provided as an annexure.

4.1 Summary descriptive statistics of Pinus roxburghii dataset

> summary(pr)

Tree	I	D	He	eight.m			DBH	. cm		Volum	e.m3
pre01	:	1	Min.	:10.8	5		Min.	:14.10)	Min.	:0.08249
pre02	:	1	1st (Qu.:22.3	5		1st Qu.	:28.95)	1st Qu.	:0.79571
pre04	:	1	Media	an :27.2	5		Median	:46.00)	Median	:2.40590
pre05	:	1	Mean	:27.7	0		Mean	:46.00)	Mean	:2.90982
pre06	:	1	3rd (Qu.:35.2	9		3rd Qu.	:62.60)	3rd Qu.	:5.17945
pre07	:	1	Max.	:41.9	0		Max.	:77.80)	Max.	:8.27103
BA.	m2			BAH	. n	ı3		DBH	12H	.m3	
Min.	:0	.015	561	Min.	:	0.	1694	Min.	:	0.2157	
1st Qu.	:0	.065	583	1st Qu.	:	1.	5702	1st Qu	ı.:	1.9992	
Median	:0	.166	519	Median	:	4.	5409	Mediar	1 :	5.7816	
Mean	:0	.194	197	Mean	:	6.	3287	Mean	:	8.0580	
3rd Qu.	:0	.307	786	3rd Qu.	:1	.1.	2558	3rd Qu	ι .: Ξ	14.3314	
Max.	:0	.475	539	Max.	:1	7.	8128	Max.	:2	22.6800	

5. Fitting the models

The models have been fitted in R, which is a robust statistical computing environment. It is a powerful tool which provides wide range of statistical and graphical options to explore, calculate and manage data besides modelling. It is very powerful and widely used statistical tool which is free and allows user to customize the scripts depending on desired output, which is not possible in many of the statistical softwares.

After reading in the excel files into R, we created other variables namely; basal area in square meter (BA.m2), basal area in meter times height in meter (BAH.m3) and square of the diameter in meter times height in meter (DBH2H.m3). The height in meter (Height.m) and diameter in centimeter (DBH.cm) were measured and recorded in the field.

Prior to fitting models, we explored and examined each set of data by preparing descriptive summaries that provided mean, median and range of dependent/response and independent/predictor variables. Then we plotted scatter graphs which provided sense of relationship between the dependent/response (volume) and independent/predictor variables (namely DBH.cm, BA.m2, DBH2H.m3 and BAH.m3). These graphs showed curvilinear relationship between response and predictor variables. The scatter plots also clearly revealed the presence of phenomenon, referred in statistical parlance, as heteroscedasticity, which is the increase in variation in response (volume) variable with increase in value of the predictor variables.

Therefore, we fitted the models using the gls () function of the nlme package of R, because the gls () function has the capability to model heteroscedasticity. We didn't transform the variables, mainly response variable, because transformation makes it difficult to directly interpret the relationship between response and predictor variables; and secondly to compare the AIC and BIC values among the different models, the response variables need to be identical.

The models were fitted with volume as a function of four variables;

1) DBH.cm,
2) BA.m2,
3) DBH2H.m3 and
4) BAH.m3.
· ~ 1 ·

For each of the variable, we fitted one simple gls () function, which can be written in the following form;

$$Y = \beta_0 + \beta_1 X + \varepsilon, \tag{6}$$

Where Y = Volume (V) and X = predictor variable

And then fitted 3 models with restricted natural cubic spline functions. The restricted natural cubic spline function enables better tracking of curvilinear relationship between response and predictor variables. These models introduce an additional predictor variable as part of a 3 knot-cubic spline. They take the following forms;

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon,$$
(7)
Where Y = Response variable, volume (V)
 $X_1 = Predictor variable$
 $X_2 = g(X_1)$

And $g(X_1)$ is the spline transformation of X_1 predictor variable

6. Summary Plots

7. Models and results

```
7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor
> pr.m1 <- gls(Volume.m3 ~ DBH.cm)</pre>
> summary(pr.m1)
Generalized least squares fit by REML
  Model: Volume.m3 ~ DBH.cm
  Data: NULL
       AIC
                 BIC
                        logLik
  95.21764 100.1304 -44.60882
Coefficients:
                 Value Std.Error
                                     t-value p-value
(Intercept) -2.594379 0.27054406 -9.589487
                                                    0
DBH.cm
              0.119650 0.00542998 22.035072
                                                    0
```

Plot of model 1

Theoretical Quantiles

7.2 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed

```
> pr.m2 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints,</pre>
            na.action=na.omit, weights = varFixed(~DBH.cm))
> summary(pr.m2)
Generalized least squares fit by REML
  Model: Volume.m3 ~ DBH.cm + DBH.cm.splinepoints
  Data: NULL
       AIC
                BIC
                      logLik
  74.97101 81.41468 -33.4855
Variance function:
 Structure: fixed weights
 Formula: ~DBH.cm
Coefficients:
                         Value Std.Error
                                            t-value p-value
(Intercept)
                    -0.7619669 0.19313498 -3.945256
                                                       3e-04
                     0.0539127 0.00692077
                                          7.789981
DBH.cm
                                                       0e+00
```

0.0000300 0.00000345

8.688129

0e+00

Plot of Model 2

DBH.cm.splinepoints

Theoretical Quantiles

```
7.3 Model 3- Volume with diameter at breast height (DBH) as predictor, with varPower
> pr.m3 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints,
            na.action=na.omit, weights = varPower(form =
             ~DBH.cm))
> summary(pr.m3)
Generalized least squares fit by REML
  Model: Volume.m3 ~ DBH.cm + DBH.cm.splinepoints
  Data: NULL
       AIC
                        logLik
                BIC
  56.10397 64.15856 -23.05198
Variance function:
 Structure: Power of variance covariate
 Formula: ~DBH.cm
 Parameter estimates:
   power
1.798497
Coefficients:
                                 Std.Error
                                             t-value p-value
                          Value
                     -0.6255356 0.06410160 -9.758501
(Intercept)
                                                            0
                     0.0478313 0.00323943 14.765344
                                                            0
DBH.cm
                     0.0000336 0.00000271 12.425500
                                                            0
DBH.cm.splinepoints
```


Theoretical Quantiles

P_roxburghii:Model 3: (Volume ~ dbh), Cubic spline with varPower

```
7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower
> pr.m4 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints,
            na.action=na.omit, weights = varConstPower(form =
            ~DBH.cm))
> summary(pr.m4)
Generalized least squares fit by REML
  Model: Volume.m3 ~ DBH.cm + DBH.cm.splinepoints
  Data: NULL
       AIC
               BIC
                      logLik
  58.03329 67.6988 -23.01665
Variance function:
 Structure: Constant plus power of variance covariate
 Formula: ~DBH.cm
 Parameter estimates:
     const
                power
125.488182
             1.990168
Coefficients:
                                             t-value p-value
                          Value Std.Error
                    -0.6447622 0.06888792 -9.359583
(Intercept)
                                                            0
DBH.cm
                     0.0486286 0.00331757 14.657924
                                                            0
DBH.cm.splinepoints 0.0000333 0.00000275 12.093231
                                                            0
```



```
7.5 Model 5 - Volume with basal area (BA) as predictor
```


Theoretical Quantiles

7.6 Model 6 - Volume with basal area (BA) as predictor, with varFixed

```
> pr.m6<- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints,</pre>
           na.action=na.omit, weights = varFixed(~BA.m2))
  summary(pr.m6)
Generalized least squares fit by REML
  Model: Volume.m3 ~ BA.m2 + BA.m2.splinepoints
  Data: NULL
       AIC
                      logLik
                BIC
  22.04746 28.49113 -7.02373
Variance function:
 Structure: fixed weights
 Formula: ~BA.m2
Coefficients:
                       Value Std.Error
                                         t-value p-value
(Intercept)
                   -0.183136 0.062263 -2.941325
                                                   0.0056
BA.m2
                   14.967393 0.918798 16.290189
                                                   0.0000
BA.m2.splinepoints 17.223965 12.203854
                                                   0.1665
                                        1.411355
```

Plot of Model 6

P_roxburghii:Model 6: (Volume ~ BA), Cubic spline with varFixed

Theoretical Quantiles

7.7 Model 7 Volume with basal area (BA) as predictor, with varPower

```
> pr.m7 <- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints,
            na.action=na.omit, weights = varPower(form = ~BA.m2))
> summary(pr.m7)
Generalized least squares fit by REML
  Model: Volume.m3 ~ BA.m2 + BA.m2.splinepoints
  Data: NULL
                       logLik
       AIC
                BIC
  9.035148 17.08974 0.4824258
Variance function:
 Structure: Power of variance covariate
 Formula: ~BA.m2
 Parameter estimates:
   power
1.062215
Coefficients:
                       Value Std.Error
                                         t-value p-value
                   -0.151034 0.021977 -6.872275
                                                 0.0000
(Intercept)
BA.m2
                   14.256793 0.609993 23.372054
                                                  0.0000
BA.m2.splinepoints 27.635236 11.405877
                                       2.422894
                                                  0.0204
```

Plot of Model 7


```
7.8 Model 8 – Volume with basal area (BA) as predictor, with varConstPower
> pr.m8 <- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints,
            na.action=na.omit, weights = varConstPower(form =
            ~BA.m2))
> summary(pr.m8)
Generalized least squares fit by REML
  Model: Volume.m3 ~ BA.m2 + BA.m2.splinepoints
  Data: NULL
       AIC
                       logLik
                BIC
  11.03515 20.70066 0.4824258
Variance function:
 Structure: Constant plus power of variance covariate
 Formula: ~BA.m2
 Parameter estimates:
       const
                    power
6.713215e-11 1.062215e+00
Coefficients:
                       Value Std.Error
                                          t-value p-value
                   -0.151034 0.021977 -6.872273
(Intercept)
                                                   0.0000
                   14.256793 0.609993 23.372052
BA.m2
                                                   0.0000
BA.m2.splinepoints 27.635231 11.405876
                                        2.422894
                                                   0.0204
```


P roxburghii: Model 8: (Volume ~ BA), Cubic spline with varConstPower

7.9 Model 9 - Volume with square of diameter at breast height * height (DBH2H) as predictor

```
> pr.m9 <- gls(Volume.m3 ~ DBH2H.m3)</pre>
> summary(pr.m9)
Generalized least squares fit by REML
  Model: Volume.m3 ~ DBH2H.m3
  Data: NULL
       AIC
                BIC
                        logLik
  38.03745 42.95021 -16.01872
Coefficients:
                 Value
                        Std.Error
                                    t-value p-value
(Intercept) 0.1711651 0.07709398
                                    2.22021
                                             0.0324
DBH2H.m3
            0.3398695 0.00725116 46.87102
                                             0.0000
```

Plot of Model 9

7.10 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed > pr.m10 <- gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints,</pre> na.action=na.omit, weights = varFixed(~DBH2H.m3)) summary(pr.m10) >Generalized least squares fit by REML Model: Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints Data: NULL AIC logLik BIC 21.34317 27.78684 -6.671586 Variance function: Structure: fixed weights Formula: ~DBH2H.m3 Coefficients: Value Std.Error t-value p-value (Intercept) 0.0034553 0.026436113 0.130705 0.8967 0.3995445 0.014504636 27.545990 DBH2H.m3 0.0000 DBH2H.m3.splinepoints -0.0003458 0.000103002 -3.357631 0.0018

Plot of Model 10

P roxburghii: Model 10: (Volume ~ dbh^2*H), Cubic Spline with varFixed

Theoretical Quantiles

7.11 Model 11- Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower > pr.m11 <- gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints, na.action=na.omit, weights = varPower(form = $\sim DBH2H.m3)$) > summary(pr.m11) Generalized least squares fit by REML Model: Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints Data: NULL AIC BIC logLik 13.20905 21.26364 -1.604523 Variance function: Structure: Power of variance covariate Formula: ~DBH2H.m3 Parameter estimates: power 0.8935963 Coefficients: Value Std.Error t-value p-value -0.0050467 0.009373344 -0.53841 (Intercept) 0.5935 0.4076275 0.011226478 36.30947 DBH2H.m3 0.0000 DBH2H.m3.splinepoints -0.0004080 0.000102107 -3.99543 0.0003

Plot of Model 11

P roxburghii:Model 11: (Volume ~ dbh^2*H), Cubic Spline with varPower

Theoretical Quantiles

```
7.12 Model 12 –Volume with square of diameter at breast height * height (DBH2H) as
predictor, with varConstPower
> pr.m12 <- gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints,
             na.action=na.omit, weights = varConstPower(form =
             \sim DBH2H.m3))
> summary(pr.m12)
Generalized least squares fit by REML
  Model: Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints
  Data: NULL
       AIC
                BIC
                        logLik
  15.20905 24.87455 -1.604523
Variance function:
 Structure: Constant plus power of variance covariate
 Formula: ~DBH2H.m3
 Parameter estimates:
       const
                    power
6.110951e-10 8.935965e-01
Coefficients:
                            Value
                                    Std.Error t-value p-value
                       -0.0050467 0.009373340 -0.53841
                                                         0.5935
(Intercept)
                        0.4076275 0.011226477 36.30947
DBH2H.m3
                                                         0.0000
```

DBH2H.m3.splinepoints -0.0004080 0.000102107 -3.99543 0.0003

Plot of Model 12

P_roxburghii:Model 12: (Volume ~ dbh^2*H), Cubic Spline with varConstPower

7.13 Model 13 - Volume with basal area * height (BAH) as predictor

```
> pr.m13 <- gls(Volume.m3 ~ BAH.m3)</pre>
> summary(pr.m13)
Generalized least squares fit by REML
  Model: Volume.m3 ~ BAH.m3
  Data: NULL
       AIC
                BIC
                        logLik
  37.55432 42.46708 -15.77716
Coefficients:
                Value
                        Std.Error
                                    t-value p-value
(Intercept) 0.1711651 0.07709398
                                    2.22021
                                             0.0324
BAH.m3
            0.4327352 0.00923247 46.87102
                                             0.0000
```

Plot of Model 13

7.14 Model 14 - Volume with basal area * height (BAH) as predictor, with varFixed

```
> pr.m14 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints,</pre>
             na.action=na.omit, weights = varFixed(~BAH.m3))
  summary(pr.m14)
Generalized least squares fit by REML
  Model: Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints
  Data: NULL
       AIC
                       logLik
                BIC
  19.41066 25.85433 -5.705328
Variance function:
 Structure: fixed weights
 Formula: ~BAH.m3
Coefficients:
                         Value
                                 Std.Error
                                              t-value p-value
                     0.0034553 0.026436113
(Intercept)
                                             0.130705
                                                       0.8967
                     0.5087159 0.018467876 27.545990
BAH.m3
                                                       0.0000
```

BAH.m3.splinepoints -0.0007139 0.000212606 -3.357631 0.0018

Plot of Model 14

P_roxburghii:Model 14: (Volume ~ BAH), Cubic spline with varFixed

Theoretical Quantiles

0.0003

```
7.15 Model 15- Volume with basal area * height (BAH) as predictor, with varPower
> pr.m15 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints,
             na.action=na.omit, weights = varPower(form =
             \simBAH.m3))
> summary(pr.m15)
Generalized least squares fit by REML
  Model: Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints
  Data: NULL
       AIC
                         logLik
                BIC
  11.27653 19.33112 -0.6382652
Variance function:
 Structure: Power of variance covariate
 Formula: ~BAH.m3
 Parameter estimates:
    power
0.8935963
Coefficients:
                                  Std.Error t-value p-value
                          Value
                    -0.0050467 0.009373344 -0.53841 0.5935
(Intercept)
                     0.5190074 0.014293996 36.30947
BAH.m3
                                                       0.0000
```

BAH.m3.splinepoints -0.0008421 0.000210759 -3.99543

Plot of Model 15

P_roxburghii:Model 15: (Volume ~ BAH), Cubic spline with varPower

0.0003

```
7.16 Model 16 – Volume with basal area * height (BAH) as predictor, with varConstPower
> pr.m16 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints,
              na.action=na.omit, weights = varConstPower(form =
              ~BAH.m3))
> summary(pr.m16)
Generalized least squares fit by REML
  Model: Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints
  Data: NULL
       AIC
                        logLik
                BIC
  13.27653 22.94204 -0.6382652
Variance function:
 Structure: Constant plus power of variance covariate
 Formula: ~BAH.m3
 Parameter estimates:
       const
                    power
5.136601e-10 8.935965e-01
Coefficients:
                                  Std.Error t-value p-value
                         Value
                    -0.0050467 0.009373340 -0.53841 0.5935
(Intercept)
                     0.5190074 0.014293995 36.30947
BAH.m3
                                                      0.0000
```

Plot of Model 16

BAH.m3.splinepoints -0.0008421 0.000210759 -3.99543

8. Model evaluation using AIC and BIC values

SN	Model	AIC	BIC
1	Model 1	95	100
	> pr.ml <- gls(Volume.m3 ~ DBH.cm)		
2	Model 2	75	81
	<pre>> pr.m2 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints, na.action=na.omit,</pre>		
	<pre>weights = varFixed(~DBH.cm))</pre>		
3	Model 3	56	64
	<pre>> pr.m3 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints, na.action=na.omit,</pre>		
	<pre>weights = varPower(form = ~DBH.cm))</pre>		
4	Model 4	58	68
	> pr.m4 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints,		
	<pre>na.action=na.omit, weights = varConstPower(form = ~DBH.cm))</pre>		
5	Model 5	58	62
	> pr.m5 <- gls(Volume.m3 ~ BA.m2)		
6	Model 6	22	28
	> pr.m6<- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints,		
	<pre>na.action=na.omit, weights = varFixed(~BA.m2))</pre>		
7	Model 7	9	17
	> pr.m7 <- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints,		
	na.action=na.omit, weights = varPower(form = ~BA.m2))		
8	Model 8	11	21
	> pr.m8 <- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints, na.action=na.omit,		
	<pre>weights = varConstPower(form = ~BA.m2))</pre>		
9	Model 9	38	43
	> pr.m9 <- gls(Volume.m3 ~ DBH2H.m3)		
10	Model 10	21	28
	<pre>> pr.m10 <-gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints,</pre>		
	<pre>na.action=na.omit, weights = varFixed(~DBH2H.m3))</pre>		

11	Model 11	13	21
	> pr.m11 <-gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints,		
	<pre>na.action=na.omit, weights = varPower(form = ~DBH2H.m3))</pre>		
12	Model 12	15	25
	> pr.m12 <- gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints,		
	<pre>na.action=na.omit, weights = varConstPower(form = ~DBH2H.m3))</pre>		
13	Model 13	38	42
	<pre>> pr.m13 <- gls(Volume.m3 ~ BAH.m3)</pre>		
14	Model 14	19	26
	<pre>> pr.m14 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints, na.action=na.omit,</pre>		
	<pre>weights = varFixed(~BAH.m3))</pre>		
15	Model 15	11	19
	<pre>> pr.m15 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints, na.action=na.omit,</pre>		
	<pre>weights = varPower(form = ~BAH.m3))</pre>		
16	Model 16	13	23
	<pre>> pr.m16 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints, na.action=na.omit,</pre>		
	<pre>weights = varConstPower(form = ~BAH.m3))</pre>		

9. Selected Models

The best fitting models have been selected based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values of the fitted models. The BIC value was mainly relied upon as it imposes a stronger penalty for the number of parameters in the model that need to be estimated. Smaller the values of AIC and BIC, better the fit of the model. Therefore, for *Pinus roxburghii*, the selected models are;

- Model 7 (Model which doesn't use height) pr.m7 <- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints, na.action=na.omit, weights = varPower(form = ~BA.m2))
- 2. Model 15 (Model which uses the height) pr.m15 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints, na.action=na.omit, weights = varPower(form = ~BAH.m3))

Two models have been selected for *Pinus roxburghii*, one without height (X_1 = BA which is model 7) and one with the height (X_1 = BAH, which is Model 15) as predictor or explanatory variable. Both the models have been fitted with natural (restricted) cubic spline function within a linear model framework. Although, nonlinear models are more flexible, they are more complicated than the linear models. The complications involved and amount of time and efforts spent on fitting nonlinear models often fail to justify by the improvements in the models. Moreover, the models fitted with natural (restricted) cubic spline functions perform well and track the curvilinearity better than nonlinear functions that were examined.

10. Demonstration of use of the selected best fit model

In general, the natural spline predictor with knots represented by t1, t2 and t3 takes the following form;

$$Y = \beta_0 + \beta_1 X + \beta_2 X_s + \varepsilon \tag{8}$$

Where X_s corresponds to value in X as follows:

$$Xs = g(X) = (X - t1)_{+}^{3} - (X - t2)_{+}^{3} \frac{(t3 - t1)}{(t3 - t2)} + (X - t3)_{+}^{3} \frac{(t2 - t1)}{(t3 - t2)}$$
(9)

and the value of the positive part functions depend on the values of the knots as follows;

$$(X - t1)^3_+ = (X - t1)^3_+, \text{ if } X > t1 \text{ and } (X - t1)^3_+ = 0, \text{ if } X < t1$$
 (10)

$$(X - t2)_{+}^{3} = (X - t2)_{+}^{3}$$
, if X> t2, and $(X - t2)_{+}^{3} = 0$, if X < t2 (11)

$$(X - t3)_{+}^{3} = (X - t3)_{+}^{3}$$
, if X > t3, and $(X - t3)_{+}^{3} = 0$, if X

Where t1, t2 and t3 for the above models are 10th, 50th and 90th percentiles and are called knots. The values of knots differ from species and models.

To demonstrate use of the selected models for *Pinus roxburghii* – model 7, the knots t1, t2 and t3 are 0.029, 0.166 and 0.421 as generated by the model. The model 7 has been fitted with volume as function of basal area in meter square (BA) i.e

$$BA = \pi r^2 \tag{13}$$

where in

$$\mathbf{r}^2 = \left[\frac{dbh}{2*100}\right]^2 \tag{14}$$

Where r is radius in meters and dbh is diameter at breast height in centimeters.

Therefore, *Pinus roxburghii* with diameter of 37 cm resulting in basal area of 0.107521009 m², the volume can be estimated using the above equation (model 7) as below. But first the value of BA.m2 has to be calculated, which is;

BA
$$= \pi r^2 = \frac{\pi * 37^2}{200^2} = 0.107521009 \text{ m}^2$$

g(X) $= (X - t1)_+^3 - (X - t2)_+^3 \frac{(t3 - t1)}{(t3 - t2)} + (X - t3)_+^3 \frac{(t2 - t1)}{(t3 - t2)}$
g(BA) $= (BA - t1)_+^3 - (BA - t2)_+^3 \frac{(t3 - t1)}{(t3 - t2)} + (BA - t3)_+^3 \frac{(t2 - t1)}{(t3 - t2)}$
g(BA) $= (0.107521009 - 0.029)_+^3 - 0 + 0$
 $= (0.078521009)_+^3 - 0 + 0$
 $= 0.000484125$

Hence, the volume predicted for this tree by the selected model (model 7) is

$$V = \beta_0 + \beta_1 \cdot BA + \beta_2 BA \cdot m_2 + \varepsilon$$

= -0.151034 + 14.256793 * 0.107521009 +27.635236 *0.000484125
= -0.151034 +1.532905 +0.0133789
= **1.39525 m³**

Similarly, to demonstrate model 15 with t1, t2 and t3 of 0.383, 4.541, and 14.432 respectively, we considered this same tree but with height, i.e dbh = 37 cm resulting in BA = 0.107521009 m^2 and height (H) = 22.6 m.

$$BAH = 0.107521009 \times 22.6$$

= 2.4299748
$$g(X) = (X - t1)_{+}^{3} - (X - t2)_{+}^{3} \frac{(t3-t1)}{(t3-t2)} + (X - t3)_{+}^{3} \frac{(t2-t1)}{(t3-t2)}$$
$$g(BAH) = (BAH - t1)_{+}^{3} - (BAH - t2)_{+}^{3} \frac{(t3-t1)}{(t3-t2)} + (BAH - t3)_{+}^{3} \frac{(t2-t1)}{(t3-t2)}$$
$$= (2.4299748 - 0.383)_{+}^{3} - 0 + 0$$
$$= (2.0469748)_{+}^{3}$$
$$= 8.5770411$$

Hence, the volume predicted by model 15 for this tree is;

$$V = \beta_0 + \beta_1 \cdot BAH \cdot m3 + \beta_2 BAH \cdot m3_2 + \varepsilon$$

= -0.0050467 + 0.5190074 * 2.4299748 + (-0.0008421 * 8.5770411)
= -0.0050467 + 1.261175 + (-0.007223)
= -0.0050467 + 3.05 - 0.24
= 1.248905 m³

The field measured volume for this particular tree with DBH of 37 cm and height of 22.6 m is 1.248905 m^3 .

11. Model Performance

To assess the performance of selected models, we compared the volume predicted by selected models (7 and 15) with the volume of the tree as measured in the field. Using the equations of the selected models, volume prediction or estimation was done in R.

		Height	DBH (in	Volume in m ³ (Field measured)	Predicted Volume Model 7	Predicted Volume Model 15	Difference (Field - Model_7) [A - B]	Difference (Field - Model_15) [A - C]
SN	Tree_ID	(in m)	cm)	[A]	[в]	[0]		
1	prwc01	22.6	37	1.44194091	1.3952497	1.24890548	0.046691215	0.193035433
2	prwc02	24.5	46	2.44209044	2.28966239	2.06591165	0.152428049	0.376178786
3	prwc03	21.6	26.6	0.71573194	0.64175769	0.61748262	0.073974251	0.098249324
4	prwc04	26.7	55.4	3.46151755	3.53112799	3.1566981	-0.069610443	0.304819448
5	prwc05	13.5	19	0.20855421	0.253187	0.19361054	-0.044632789	0.014943665
6	prwc07	25.6	75.5	5.37867069	7.31077405	5.19481935	-1.932103363	0.183851342
7	prwc08	30.5	68.5	5.76694296	5.83174951	5.11053589	-0.064806545	0.656407068
8	pre01	37.47	77.8	7.74458705	7.82887469	7.56335923	-0.084287642	0.18122782
9	pre02	36.9	57.4	4.17151	3.83950579	4.45254103	0.332004212	-0.281031031
10	pre04	39.4	62	5.32993392	4.60825257	5.35956346	0.721681354	-0.029629538
11	pre05	23.94	32.5	1.03642439	1.0360178	1.02223685	0.000406587	0.014187537
12	pre06	37.1	68.5	5.52193416	5.83174951	6.0253215	-0.309815345	-0.50338734
13	pre07	27.9	47.8	2.4487711	2.50136966	2.51033927	-0.052598561	-0.061568169
14	pre08	36.8	59.8	4.88744858	4.23029148	4.76178767	0.657157097	0.125660906
15	pre09	29.4	39.7	2.01845706	1.63728868	1.85470231	0.381168381	0.163754753
16	pre10	40.41	67.4	6.17483323	5.61387297	6.30233394	0.560960257	-0.127500706
17	pre11	37.63	76.2	7.05233304	7.46681108	7.32112577	-0.414478037	-0.268792728
18	pre13	13.16	19.2	0.19286857	0.26174179	0.19270571	-0.068873217	0.000162863
19	pre15	21.18	27.8	0.63296676	0.71521516	0.66156931	-0.082248397	-0.028602555
20	pre16	23.1	52.2	2.69780269	3.07033907	2.48091546	-0.372536379	0.216887231
21	pre17	25.8	40.9	1.53357203	1.75171232	1.73132371	-0.218140285	-0.197751679
22	pre18	19.9	23	0.38040394	0.44135556	0.4239932	-0.060951616	-0.043589255
23	pre20	34.79	73	6.41142965	6.76525424	6.35551419	-0.353824588	0.055915458
24	pre21	31.12	50	2.93531604	2.77661313	3.01270775	0.158702906	-0.077391711
25	pre22	27.8	36.2	1.46389068	1.32746262	1.46713261	0.136428063	-0.003241929
26	pre23	41.9	65.3	5.76794377	5.20993671	6.15914711	0.558007063	-0.391203339
27	pre24	28.65	54.6	2.86230545	3.41217602	3.27559048	-0.549870567	-0.413285033
28	pre28	13.99	16.8	0.17214775	0.16499747	0.15590653	0.007150279	0.016241225
29	pre29	19.8	27.4	0.65572133	0.69035489	0.60048688	-0.034633563	0.05523445
30	pre31	28.83	34.4	1.50378403	1.18122924	1.37542717	0.322554789	0.128356862
31	pre33	24.9	46	1.66008246	2.28966239	2.09808681	-0.629579931	-0.438004345
32	pre34	10.85	14.1	0.08248901	0.07157869	0.08288213	0.010910316	-0.000393122
33	pre35	17.86	29.1	0.6003979	0.79861936	0.61101114	-0.198221461	-0.010613242

		•						
34	prec01	25.1	31.5	0.90735332	0.96325156	1.00689083	-0.055898237	-0.099537511
35	prec02	34.7	64.4	5.12929119	5.0417728	5.1345332	0.087518388	-0.005242014
36	prec03	26.1	28.5	0.82236773	0.75962748	0.8573379	0.062740246	-0.034970172
37	prec04	17.65	15	0.12872634	0.10090435	0.15683233	0.027821993	-0.028105991
38	prec05	33.65	44.3	2.36971765	2.10056515	2.59381777	0.269152499	-0.224100122
39	prec07	37.32	75.3	8.27102878	7.26645654	7.12017092	1.004572239	1.150857856
40	prec08	37.8	54	3.40957869	3.32460808	4.09442932	0.084970613	-0.684850634
				116.392867	116.332977	116.409687	0.059889831	-0.016820141

From the above table, the difference [A-B] provides difference between the volume measured in the field (actual volume) and the volume predicted by model 7. The figures with negative (-) indicates that the volume has been over-predicted by the model 7 vis-à-vis actual volume of the particular tree. And the figures without negative (-) sign indicates the under prediction of volume by the model 7.

Similarly, the difference [A-C] is the difference between the actual volume and the volume predicted by the model 15. Same explanation is applicable here – the figures with negative sign indicates overprediction of volume by the model and vice-versa, while those figures without (-) are under prediction of volume by the model 15.

Summation of the figures in the difference column results in 0.059889831 and -0.016820141 for model 7 and model 15 respectively. These indicate that the model 7 under predicts total volume for 40 trees by only 0.059889831 m³, while the model 15 over predicts the total volume of 40 trees by 0.016820141 m³. Therefore, looking this, one may be inclined to conclude that overall, model 15 predicts better than model 7, despite model 7 having lower AIC and BIC than model 15.

12. Limitations of the model

The model has the following limitations;

- 1. The modeling has been done based on only 40 sample trees. The model can be further improved by increasing the number of samples.
- 2. The diameter for the sample trees ranges between minimum of 14 cm to 77 cm (over bark). Thus, the model prediction for trees above 77 cm must be done with caution, since there were no trees above 77 cm diameter at breast height in the sample.

13. Conclusion

The model 15 that uses the height seems to perform slightly better than the model 7 that doesn't use the height, as empirically shown above. This further reinforces and confirms the observations made by Professor Timothy Gordon Gregoire and Mr. Yograj Chettri while modeling conifer species for biomass estimation. They too observed that in conifers, the models fitted with height as predictors predicted the biomass better than those models that didn't use height as predictor variable.

However, since two models are fitted using different predictors (one with and other without height), it leads us to confidently conclude that *Pinus roxburghii* has two best models, which are;

- 1. Model 7 the best fit model which does not use height as a predictor
- 2. Model 15- the best fit model which uses height as a predictor

14. Acknowledgement

We would like to express our heartfelt gratitude to the biomass equation development team led by Mr. Yograj Chettri, Research Officer at UWICER, formerly RDC who collected data (diameter and height) for developing merchantable volume equation for *Pinus roxburghii*, as part of the field work for developing biomass equation under the projects managed by FRMD.

Immense gratitude is also due to Professor Timothy Gordon Gregoire, School of Forestry and Environmental Studies (FES), Yale University who has been a guide and mentor as we worked on this assignment.

Thanks are also due to our Director, Mr. Lobzang Dorji and other colleagues working in FRMD for their support and advice.

Had it not been for the immense support, guidance and encouragement that the abovementioned people have generously provided to us, this task would have remained incomplete.

15. References

- Lee, D., Seo, Y., & Choi, J. (2017). Estimation and validation of stem volume equations for Pinus densiflora, Pinus koraiensis, and Larix kaempferi in South Korea. *Forest Science and Technology*, 13(2), 77-82.
- Umunay, P., Gregoire, T., & Ashton, M. (2017). Estimating biomass and carbon for Gilbertiodendron dewevrei (De Wild) Leonard, a dominant canopy tree of African tropical Rainforest: Implications for policies on carbon sequestration. *Forest Ecology and Management*, 404, 31-44.
- 3. White, J. C., Coops, N. C., Wulder, M. A., Vastaranta, M., Hilker, T., & Tompalski, P. (2016). Remote sensing technologies for enhancing forest inventories: A review. *Canadian Journal of Remote Sensing*, 42(5), 619-641.
- 4. Mohammadi, J., Shataee, S., & Babanezhad, M. (2011). Estimation of forest stand volume, tree density and biodiversity using Landsat ETM+ Data, comparison of linear and regression tree analyses. *Procedia Environmental Sciences*, *7*, 299-304.
- 5. Fagan, M., & DeFries, R. (2009). Measurement and Monitoring of the World's Forests. *Resources for the Future, 129*.
- 6. Feng, Z. K., Yang, B.G., Luo, X., Han, G.S., Guo, X.X., (2008). Experiment of estimating forest stand volume with LiDAR technology. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences., XXXVII.*
- 7. McRoberts, R. E., & Tomppo, E. O. (2007). Remote sensing support for national forest inventories. *Remote Sensing of Environment, 110*(4), 412-419.
- 8. Westfall, J. A., & Patterson, P. L. (2007). Measurement variability error for estimates of volume change. *Canadian Journal of Forest Research*, *37*(11), 2201-2210.
- 9. Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. *International Journal of Remote Sensing*, 27(7), 1297-1328.
- 10. Sadiq, R. A. (2006). A new approach to log volume estimation. *Southern Journal of Applied Forestry, 30*(1), 30-39.
- 11. Hyyppä, J., Mielonen, T., Hyyppä, H., Maltamo, M., Yu, X., Honkavaara, E., & Kaartinen, H. (2005). Using individual tree crown approach for forest volume extraction with aerial images and laser point clouds.
- 12. Patterson, D. W., & Doruska, P. F. (2004). A new and improved modification to Smalian's equation for butt logs. *Forest Products Journal*, 54(4), 69.
- 13. Eerikäinen, K. (2001). Stem volume models with random coefficients for Pinus kesiya in Tanzania, Zambia, and Zimbabwe. *Canadian Journal of Forest Research*, 31(5), 879-888.
- 14. Gregoire, T. G., & Schabenberger, O. (1996). Nonlinear mixed-effects modeling of cumulative bole volume with spatially correlated within-tree data. *Journal of Agricultural, Biological, and Environmental Statistics*, 107-119.
- 15. Bi, H. (1994). Volume equations for six Eucalyptus species on the south-east tablelands of New South Wales: Research Division State Forests of New South Wales.
- 16. Laumans, P. (1994). Height-diameter functions from PIS for country-level site classification and local volume table selection. Thimphu.
- 17. Biging, G. S. (1988). Estimating the accuracy of volume equations using taper equations of stem profile. *Canadian Journal of Forest Research*, *18*(8), 1002-1007.
- 18. Reed, D. D., & Byrne, J. C. (1985). A simple, variable form volume estimation system. The Forestry Chronicle, 61(2), 87-90.
- 19. Avery, T.E., and Burkhart, H.E. (1983). Forest Measurements, Third Edition. McGraw-Hill, Inc.
- 20. Sadiq, R. A., & Smith, V. G. (1983). Estimation of individual tree volumes with age and diameter. *Canadian Journal of Forest Research*, 13(1), 32-39.
- 21. Cochran, P. (1982). Estimating wood volumes for Douglas-fir and white fir from outside bark measurements. *Forest Science, 28*(1), 172-174.

- 22. Bredenkamp, B. (1982). Volume regression equations for Eucalyptus grandis on the coastal plain of Zululand. *South African Forestry Journal*, 122(1), 66-69.
- 23. Cao, Q. v., & Burkhart, H. E. (1980). Cubic-foot volume of loblolly pine to any height limit. *Southern Journal of Applied Forestry*, 4(4), 166-168.
- 24. Cao, Q. V., Burkhart, H. E., & Max, T. A. (1980). Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit. *Forest Science*, 26(1), 71-80.
- 25. Goulding, C. (1979). Cubic spline curves and calculation of volume of sectionally measured trees. *NZJ For. Sci, 9*(1), 89-99.
- 26. Burkhart, H. E. (1977). Cubic-foot volume of loblolly pine to any merchantable top limit. Southern Journal of Applied Forestry, 1(2), 7-9.
- 27. Heger, L. (1965). A trial of Hohenadl's method of stem form and stem volume estimation. *The Forestry Chronicle*, 41(4), 466-475.

SN	Tree_ID	Height.m	DBH.cm	Volume.m3	BA.m2	BAH.m3	DBH2H.m3
1	prwc01	22.6	37	1.44194091	0.10752101	2.4299748	3.09394
2	prwc02	24.5	46	2.44209044	0.16619025	4.0716612	5.1842
3	prwc03	21.6	26.6	0.71573194	0.05557163	1.2003473	1.5283296
4	prwc04	26.7	55.4	3.46151755	0.24105126	6.4360687	8.1946572
5	prwc05	13.5	19	0.20855421	0.02835287	0.3827638	0.48735
6	prwc07	25.6	75.5	5.37867069	0.44769659	11.4610327	14.59264
7	prwc08	30.5	68.5	5.76694296	0.36852845	11.2401178	14.3113625
8	pre01	37.47	77.8	7.74458705	0.47538894	17.8128237	22.6799915
9	pre02	36.9	57.4	4.17151	0.25876985	9.5486073	12.1576644
10	pre04	39.4	62	5.32993392	0.30190705	11.8951379	15.14536
11	pre05	23.94	32.5	1.03642439	0.08295768	1.9860069	2.5286625
12	pre06	37.1	68.5	5.52193416	0.36852845	13.6724056	17.4082475
13	pre07	27.9	47.8	2.4487711	0.17945091	5.0066805	6.3747036
14	pre08	36.8	59.8	4.88744858	0.28086152	10.3357041	13.1598272
15	pre09	29.4	39.7	2.01845706	0.12378582	3.6393031	4.6337046
16	pre10	40.41	67.4	6.17483323	0.35678754	14.4177843	18.3572932
17	prel1	37.63	76.2	7.05233304	0.45603673	17.1606622	21.8496337
18	pre13	13.16	19.2	0.19286857	0.02895292	0.3810204	0.4851302
19	pre15	21.18	27.8	0.63296676	0.06069871	1.2855987	1.6368751
20	pre16	23.1	52.2	2.69780269	0.21400843	4.9435948	6.2943804
21	pre17	25.8	40.9	1.53357203	0.13138219	3.3896605	4.3158498
22	pre18	19.9	23	0.38040394	0.04154756	0.8267965	1.05271
23	pre20	34.79	73	6.41142965	0.41853868	14.5609607	18.539591
24	pre21	31.12	50	2.93531604	0.19634954	6.1103977	7.78
25	pre22	27.8	36.2	1.46389068	0.10292172	2.8612237	3.6430232
26	pre23	41.9	65.3	5.76794377	0.33490085	14.0323454	17.8665371
27	pre24	28.65	54.6	2.86230545	0.23413976	6.7081041	8.5410234
28	pre28	13.99	16.8	0.17214775	0.02216708	0.3101174	0.3948538
29	pre29	19.8	27.4	0.65572133	0.05896455	1.1674981	1.4865048
30	pre31	28.83	34.4	1.50378403	0.09294088	2.6794855	3.4116269
31	pre33	24.9	46	1.66008246	0.16619025	4.1381373	5.26884
32	pre34	10.85	14.1	0.08248901	0.0156145	0.1694173	0.2157088
33	pre35	17.86	29.1	0.6003979	0.0665083	1.1878383	1.5124027
34	prec01	25.1	31.5	0.90735332	0.07793113	1.9560714	2.4905475
35	prec02	34.7	64.4	5.12929119	0.32573289	11.3029314	14.3913392
36	prec03	26.1	28.5	0.82236773	0.06379397	1.6650225	2.1199725
37	prec04	17.65	15	0.12872634	0.01767146	0.3119012	0.397125
38	prec05	33.65	44.3	2.36971765	0.1541336	5.1865958	6.6037788
39	prec07	37.32	75.3	8.27102878	0.44532783	16.6196345	21.1607759
40	prec08	37.8	54	3.40957869	0.2290221	8.6570355	11.02248

16. Annexure – Dataset for Pinus roxburghii

Merchantable_volume_equation_Pinus roxburghii: 35