SPECIES SPECIEIC VOLUME EQUATION TO ESTIMATE MERCHANTABLE VOLUME

Pinus roxburghii

Species specific volume equation to estimate merchantable volume

Pinus roxburghii

Table of Contents

1. Summary 1
2. Introduction 2
3. Volume Calculation. 3
4. The Dataset used for modeling volume of Pinus roxburghii. 4
4.1 Summary descriptive statistics of Pinus roxburghii dataset 4
5. Fitting the models. 5
6. Summary Plots 6
7. Models and results. 7
7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor 7
7.2 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed 8
7.3 Model 3- Volume with diameter at breast height (DBH) as predictor, with varPower. 9
7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower. 10
7.5 Model 5 - Volume with basal area (BA) as predictor. 11
7.6 Model 6 - Volume with basal area (BA) as predictor, with varFixed. 12
7.7 Model 7 Volume with basal area (BA) as predictor, with varPower. 13
7.8 Model 8 - Volume with basal area (BA) as predictor, with varConstPower. 14
7.9 Model 9 - Volume with square of diameter at breast height * height (DBH2H) as predictor. 15
7.10 Model 10 - Volume with square of diameter at breast height * height (DBH 2 H) as predictor, with varFixed 16
7.11 Model 11- Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower 17
7.12 Model 12 -Volume with square of diameter at breast height * height (DBH2H) as predictor, with varConstPower 18
7.13 Model 13 - Volume with basal area * height (BAH) as predictor. 19
7.14 Model 14 - Volume with basal area * height (BAH) as predictor, with varFixed 20
7.15 Model 15- Volume with basal area * height (BAH) as predictor, with varPower. 21
7.16 Model 16 - Volume with basal area * height (BAH) as predictor, with varConstPower 22
8. Model evaluation using AIC and BIC values 23
9. Selected Models 25
10. Demonstration of use of the selected best fit model 25
11. Model Performance 28
12. Limitations of the model. 29
13. Conclusion. 30
14. Acknowledgement. 31
15. References 32
16. Annexure - Dataset for Pinus roxburghii 34

1. Summary

The volume equation developed in this study will predict the merchantable volume of Pinus roxburgbii. The merchantability standard for volume calculation adopted for this study is 10 cm and above diameter at breast height (dbh) and top diameter measured up to 10 cm over bark.

A total of 16 models were fitted. First 4 models were fitted with volume as a function of diameter at breast height (DBH), while models $5-8$ were fitted with basal area (BA) as the predictor variable. With product of squared diameter at breast height and height $(\mathrm{DBH} 2 \mathrm{H})$ as predictor variable, 4 models, namely the models $9-12$ were fitted. The last four models, 13-16 were fitted with product of basal area and height (BAH) as the predictor.

The initial plots of response variable (volume) and predictor variables (DBH, BA, DBH2H and BAH) clearly indicated presence of heteroscedasticity, which has been modeled using variance functions (varFixed, varPower and varConstPower) in gls () function of nlme package.

Of the sixteen, two models viz model 7(fitted without height as predictor) and model 15 (fitted with height as predictor) with lowest values of AIC and BIC have been selected as the best fit models for Pinus roxburgbii. The model 7 had AIC and BIC values of 9 and 17 respectively, while the model 15 had AIC and BIC values of 11 and 19 respectively. Lower the AIC and BIC values, better the fit of the model.

The performance of the selected models was assessed by comparing the actual volume with the volumes predicted by two selected models for each tree. From the assessment, we observed that the model 15 which uses height outperforms the model 7 .

2. Introduction

The volume equations, developed during pre-investment survey (PIS) carried out between 1974-8 predict total tree volume, and not the predict merchantable volume of trees. The recent change of policy of the Department of Forests and Park Services to allot timber for rural house construction in the form of log volume instead of allotting by number of trees as was once practiced, has necessitated development of merchantable log volume equation.

Therefore, standards of merchantability adopted for this study to develop merchantable log volume equation are trees of 10 cm and above diameter at breast height (dbh) and the sections up to 10 cm top diameter over the bark.

As was done for PIS exercise to develop volume equation, this study ignores/does not consider the volume of foliage and branches for the purpose of calculating the merchantable volume. This decision stems from the objective, which is to estimate merchantable log volume. Moreover, branches are rarely used as timber (at least in Bhutan) and are mostly used for firewood.

The sample trees for this study have been felled as part of biomass equation development field work. The data protocol for biomass equation development required collecting a minimum of 8 trees each from four regions of Bhutan namely, eastern, eastern central, western and western central. However, 40 trees in total have been felled for Pinus roxburgbii from three regions namely; eastern, east-central and western-central regions.

The trees were felled at 0.3 m height from the ground at which the diameter was measured and recorded. After felling diameter was measured at 0.7 m from 0.3 m height (essentially making 1 m height, i.e $0.3 \mathrm{~m}+0.7 \mathrm{~m}=1 \mathrm{~m}$). Thereafter, at every meter length, the diameter was measured and recorded, thus making many 1 m length sections of log. As mentioned above the smallest top diameter considered for merchantable \log volume calculation was up to 10 cm diameter over bark. Top sections below 10 cm diameter have been discarded.

3. Volume Calculation

Trees after felling are converted into different sizes of sections depending on the requirement and demand. Sections with length of 8 or more feet long are called logs and shorter ones are called sticks or bolts (Avery and Burkhart, 1994). The scaling or measuring the volume of the section is done by multiplying the length with the cross-sectional area of the section. Although they rarely form true circles, they are assumed so for the purpose of calculating cross sectional area in meter square, which is;

$$
\begin{equation*}
\text { Cross sectional area }(\mathrm{A})=A=\pi r^{2}=\frac{\pi D^{2}}{4 * 10000} \tag{1}
\end{equation*}
$$

Where \mathbf{r} is radius in meters and \mathbf{D} is diameter at breast height in centimeters.
From the ground level to 0.3 m height (height at which sample tree has been cut) is section I, while 0.3 m to 0.7 m is section II. The subsequent sections of 1 m length each are numbered III, IV and so on. The last section is the terminal section, whose length is equal to or less than 1 m . As was adopted for PIS, in this study too the branch volumes are ignored assuming that rarely branches yield merchantable timber.

The diameter at zero height (ground level) for stump wasn't measured in the field (for those sample trees for which volume data was collected during biomass equation development field work) and therefore, calculated based on diameter reading at 0.3 m height. Therefore, diameter at zero height was calculated as 10% more than diameter at 0.3 m height, which is;

$$
\begin{equation*}
\mathrm{D}_{\text {(ground) }}=\mathrm{D}_{(0.3 \mathrm{~m})}+10 \% * \mathrm{D}_{(0.3 \mathrm{~m})} \tag{2}
\end{equation*}
$$

Where;
$D_{\text {(ground) }}$ is diameter in centimeter of tree at ground level
$D_{(0.3 \mathrm{~m})}$ is diameter in centimeter of tree at 0.3 m height

For instance, if $\mathrm{D}_{(0.3 \mathrm{~m})}$ was 70 cm , the $\mathrm{D}_{\text {(ground) }}$ is calculated as;

$$
\begin{aligned}
\mathrm{D}_{\text {(ground) }} & =70 \mathrm{~cm}+10 \% \text { of } 70 \mathrm{~cm} \\
& =70+7 \\
& =77 \mathrm{~cm}
\end{aligned}
$$

The most commonly used formulae for calculating volume are the Huber, Newton and Smalian's formulae (Sadiq, 2006, and Goulding, 1979). Of the three commonly used volume calculation approaches or formulae, the Smalian's formula has been used to calculate volume (in m^{3}) for this study, as under;

$$
\begin{equation*}
\text { Section volume }\left(V_{s}\right)=\frac{A+a}{2} * L \tag{3}
\end{equation*}
$$

Where $\mathrm{A}=$ Cross sectional area in m^{2} at large end of the section
$a=$ Cross sectional area in m^{2} at small end of the section
$\mathrm{L}=$ Length of the section in meter
Smalian's formula is the easiest and least expensive to apply and therefore applied to get volume for each section of the sample trees. However, for the terminal section, the following formula was used to calculate the volume;

$$
\begin{equation*}
\text { Terminal section volume }\left(V_{t}\right)=\frac{A}{3} * L \tag{4}
\end{equation*}
$$

The volume for sections and terminal section for individual trees were then summed to obtain the total volume for each individual sample tree, which is;

$$
\begin{equation*}
\text { Volume of tree }(\mathrm{V})=\sum_{s=1}^{n} V_{s}+V_{t} \tag{5}
\end{equation*}
$$

After obtaining individual tree volume (Volume.m3), it was then tabulated against the variables - height in meter (Height.m) and the diameter at breast height in centimeter (DBH.cm).

4. The Dataset used for modeling volume of Pinus roxburgbii

A total of 40 trees have been fell and collected data for developing volume equations for Pinus roxburgbii from3 regions, namely eastern, eastern central and western central. Summary of the dataset is presented below, while the detailed one is provided as an annexure.

4.1 Summary descriptive statistics of Pinus roxburghii dataset

```
> summary(pr)
```


5. Fitting the models

The models have been fitted in R, which is a robust statistical computing environment. It is a powerful tool which provides wide range of statistical and graphical options to explore, calculate and manage data besides modelling. It is very powerful and widely used statistical tool which is free and allows user to customize the scripts depending on desired output, which is not possible in many of the statistical softwares.

After reading in the excel files into R , we created other variables namely; basal area in square meter (BA.m2), basal area in meter times height in meter (BAH.m3) and square of the diameter in meter times height in meter (DBH2H.m3). The height in meter (Height.m) and diameter in centimeter (DBH.cm) were measured and recorded in the field.

Prior to fitting models, we explored and examined each set of data by preparing descriptive summaries that provided mean, median and range of dependent/response and independent/predictor variables. Then we plotted scatter graphs which provided sense of relationship between the dependent/response (volume) and independent/predictor variables (namely DBH.cm, BA.m2, DBH2H.m3 and BAH.m3). These graphs showed curvilinear relationship between response and predictor variables. The scatter plots also clearly revealed the presence of phenomenon, referred in statistical parlance, as heteroscedasticity, which is the increase in variation in response (volume) variable with increase in value of the predictor variables.

Therefore, we fitted the models using the gls () function of the nlme package of R, because the gls () function has the capability to model heteroscedasticity. We didn't transform the variables, mainly response variable, because transformation makes it difficult to directly interpret the relationship between response and predictor variables; and secondly to compare the AIC and BIC values among the different models, the response variables need to be identical.

The models were fitted with volume as a function of four variables;

1) DBH.cm,
2) BA.m2,
3) DBH2H.m3 and
4) BAH.m3.

For each of the variable, we fitted one simple gls () function, which can be written in the following form;

$$
\begin{equation*}
\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}+\varepsilon, \tag{6}
\end{equation*}
$$

Where $\mathrm{Y}=$ Volume (V) and $\mathrm{X}=$ predictor variable
And then fitted 3 models with restricted natural cubic spline functions. The restricted natural cubic spline function enables better tracking of curvilinear relationship between response and predictor variables. These models introduce an additional predictor variable as part of a 3 knot-cubic spline. They take the following forms;

$$
\begin{align*}
& \mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\beta_{2} \mathrm{X}_{2}+\varepsilon, \tag{7}\\
& \text { Where } \mathrm{Y}=\text { Response variable, volume }(\mathrm{V}) \\
& \mathrm{X}_{1}=\text { Predictor variable } \\
& \mathrm{X}_{2}=\mathrm{g}\left(\mathrm{X}_{1}\right)
\end{align*}
$$

And $g\left(\mathrm{X}_{1}\right)$ is the spline transformation of X_{1} predictor variable

6. Summary Plots

Pinus roxburghii ($\mathrm{N}=40$)

7. Models and results

7.1 Model 1 - Volume with diameter at breast height (DBH) as predictor
> pr.m1 <- gls(Volume.m3 ~ DBH.cm)
> summary(pr.m1)

Generalized least squares fit by REML
Model: Volume.m3 ~ DBH.cm
Data: NULL
AIC BIC logLik
95.21764 100.1304-44.60882

Coefficients:

	Value	Std.Error	t-value	p-value
(Intercept)	-2.594379	0.27054406	-9.589487	0
DBH. cm	0.119650	0.00542998	22.035072	0

Plot of model 1

7.2 Model 2 - Volume with diameter at breast height (DBH) as predictor, with varFixed

```
> pr.m2 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints,
    na.action=na.omit, weights = varFixed(~DBH.cm))
> summary(pr.m2)
Generalized least squares fit by REML
    Model: Volume.m3 ~ DBH.cm + DBH.cm.splinepoints
    Data: NULL
        AIC BIC logLik
    74.97101 81.41468 -33.4855
Variance function:
    Structure: fixed weights
    Formula: ~DBH.cm
```

Coefficients:

	Value	Std.Error	t-value	p-value
(Intercept)	-0.7619669	0.19313498	-3.945256	$3 \mathrm{e}-04$
DBH.cm	0.0539127	0.00692077	7.789981	$0 \mathrm{e}+00$
DBH.cm.splinepoints	0.0000300	0.00000345	8.688129	$0 e+00$

Plot of Model 2

$\hat{\beta}_{0}=-0.76197$
$\hat{\hat{\beta}}_{1}=0.05391$
$\hat{\beta}_{2}=3 \mathrm{e}-05$
$A / C=75$
$B I C=81$
$\hat{\sigma}=0.06$

7.3 Model 3- Volume with diameter at breast height (DBH) as predictor, with varPower

```
> pr.m3 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints,
    na.action=na.omit, weights = varPower(form =
    ~DBH.cm))
> summary(pr.m3)
```

Generalized least squares fit by REML
Model: Volume.m3 ~ DBH.cm + DBH.cm.splinepoints
Data: NULL
AIC BIC logLik
56.10397 64.15856-23.05198
Variance function:
Structure: Power of variance covariate
Formula: ~DBH.cm
Parameter estimates:
power
1.798497

Coefficients:

	Value	Std.Error	t-value	p-value
(Intercept)	-0.6255356	0.06410160	-9.758501	0
DBH.cm	0.0478313	0.00323943	14.765344	0
DBH.cm.splinepoints	0.0000336	0.00000271	12.425500	0

Plot of Model 3

P_roxburghii:Model 3: (Volume ~ dbh), Cubic spline with varPower

$$
\begin{aligned}
& \hat{\beta}_{0}=-0.62554 \\
& \hat{\beta}_{1}=0.04783 \\
& \hat{\beta}_{2}=3 \mathrm{e}-05 \\
& A I C=56 \\
& B I C=64 \\
& \hat{\mathrm{o}}=3 \mathrm{e}-04 \\
& \hat{\delta}=1.8
\end{aligned}
$$

Theoretical Quantiles

```
7.4 Model 4 - Volume with diameter at breast height (DBH) as predictor, with varConstPower
> pr.m4 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints,
    na.action=na.omit, weights = varConstPower(form =
    ~DBH.cm))
> summary(pr.m4)
Generalized least squares fit by REML
    Model: Volume.m3 ~ DBH.cm + DBH.cm.splinepoints
    Data: NULL
        AIC BIC logLik
    58.03329 67.6988 -23.01665
Variance function:
    Structure: Constant plus power of variance covariate
    Formula: ~DBH.cm
    Parameter estimates:
        const
                                power
125.488182 1.990168
Coefficients:
\begin{tabular}{lrrrr} 
& Value & Std.Error & t-value & p-value \\
(Intercept) & -0.6447622 & 0.06888792 & -9.359583 & 0 \\
DBH.cm & 0.0486286 & 0.00331757 & 14.657924 & 0 \\
DBH.cm.splinepoints & 0.0000333 & 0.00000275 & 12.093231 & 0
\end{tabular}
```


Plot of Model 4

Theoretical Quantiles
7.5 Model 5 - Volume with basal area (BA) as predictor

```
> pr.m5 <- gls(Volume.m3 ~ BA.m2)
> summary(pr.m5)
Generalized least squares fit by REML
    Model: Volume.m3 ~ BA.m2
    Data: NULL
```

```
    AIC BIC logLik
```

 AIC BIC logLik
 57.50613 62.41889 -25.75306
    ```
    57.50613 62.41889 -25.75306
```


Coefficients:

| | Value | Std.Error | t-value | p-value |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | -0.306588 | 0.1225028 | -2.50270 | 0.0167 |
| BA.m2 | 16.496892 | 0.5083931 | 32.44909 | 0.0000 |

Plot of Model 5

7.6 Model 6 - Volume with basal area (BA) as predictor, with varFixed

```
> pr.m6<- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints,
    na.action=na.omit, weights = varFixed(~BA.m2))
> summary(pr.m6)
Generalized least squares fit by REML
    Model: Volume.m3 ~ BA.m2 + BA.m2.splinepoints
    Data: NULL
        AIC BIC logLik
    22.04746 28.49113 -7.02373
Variance function:
    Structure: fixed weights
    Formula: ~BA.m2
Coefficients:
\begin{tabular}{lrrrr} 
& Value & Std.Error & t-value & p-value \\
(Intercept) & -0.183136 & 0.062263 & -2.941325 & 0.0056 \\
BA.m2 & 14.967393 & 0.918798 & 16.290189 & 0.0000 \\
BA.m2.splinepoints & 17.223965 & 12.203854 & 1.411355 & 0.1665
\end{tabular}
```

Plot of Model 6

7.7 Model 7 Volume with basal area (BA) as predictor, with varPower

```
> pr.m7 <- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints,
    na.action=na.omit, weights = varPower(form = ~BA.m2))
> summary(pr.m7)
Generalized least squares fit by REML
    Model: Volume.m3 ~ BA.m2 + BA.m2.splinepoints
    Data: NULL
        AIC BIC logLik
    9.035148 17.08974 0.4824258
Variance function:
    Structure: Power of variance covariate
    Formula: ~BA.m2
    Parameter estimates:
        power
1.062215
Coefficients:
\begin{tabular}{lrrrr} 
& Value & Std.Error & t-value & p-value \\
(Intercept) & -0.151034 & 0.021977 & -6.872275 & 0.0000 \\
BA.m2 & 14.256793 & 0.609993 & 23.372054 & 0.0000 \\
BA.m2.splinepoints & 27.635236 & 11.405877 & 2.422894 & 0.0204
\end{tabular}
```


Plot of Model 7

P_roxburghii:Model 7: (Volume ~ BA), Cubic spline with varPower

$$
\begin{aligned}
& \hat{\beta}_{0}=-0.15103 \\
& \hat{\beta}_{1}=14.25679 \\
& \hat{\beta}_{2}=27.63524 \\
& A I C=9 \\
& B I C=17 \\
& \hat{\delta}=1.06 \\
& \hat{\sigma}=2.08
\end{aligned}
$$

Theoretical Quantiles

```
7.8 Model 8 - Volume with basal area (BA) as predictor, with varConstPower
> pr.m8 <- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints,
    na.action=na.omit, weights = varConstPower(form =
    ~BA.m2))
> summary(pr.m8)
Generalized least squares fit by REML
    Model: Volume.m3 ~ BA.m2 + BA.m2.splinepoints
    Data: NULL
        AIC BIC logLik
    11.03515 20.70066 0.4824258
Variance function:
    Structure: Constant plus power of variance covariate
    Formula: ~BA.m2
    Parameter estimates:
        const power
6.713215e-11 1.062215e+00
```

Coefficients:

| | Value | Std.Error | t-value | p-value |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | -0.151034 | 0.021977 | -6.872273 | 0.0000 |
| BA.m2 | 14.256793 | 0.609993 | 23.372052 | 0.0000 |
| BA.m2.splinepoints | 27.635231 | 11.405876 | 2.422894 | 0.0204 |

Plot of Model 8

Theoretical Quantiles
7.9 Model 9 - Volume with square of diameter at breast height * height $(\mathrm{DBH} 2 \mathrm{H})$ as predictor

```
> pr.m9 <- gls(Volume.m3 ~ DBH2H.m3)
> summary(pr.m9)
```

Generalized least squares fit by REML
Model: Volume.m3 ~ DBH2H.m3
Data: NULL

$$
\begin{array}{rrr}
\text { AIC } & \text { BIC } & \text { logLik } \\
38.03745 & 42.95021 & -16.01872
\end{array}
$$

Coefficients:

| | Value | Std.Error | t-value | p-value |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 0.1711651 | 0.07709398 | 2.22021 | 0.0324 |
| DBH2H.m3 | 0.3398695 | 0.00725116 | 46.87102 | 0.0000 |

Plot of Model 9

P_roxburghii:Model 9: (Volume ~dbh^2* H)

$$
\begin{aligned}
& \hat{\beta}_{0}=0.17117 \\
& \hat{\beta}_{1}=0.33987 \\
& \mathrm{AIC}=38 \\
& \mathrm{BIC}=43 \\
& \hat{\mathrm{o}}=0.32
\end{aligned}
$$

7.10 Model 10 - Volume with square of diameter at breast height * height (DBH2H) as predictor, with varFixed

```
> pr.m10 <- gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints,
    na.action=na.omit, weights = varFixed(~DBH2H.m3))
> summary(pr.m10)
```

Generalized least squares fit by REML
Model: Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints
Data: NULL
AIC BIC logLik
21.34317 27.78684-6.671586
Variance function:
Structure: fixed weights
Formula: ~DBH2H.m3

Coefficients:

| | Value | Std.Error | t-value | p-value |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 0.0034553 | 0.026436113 | 0.130705 | 0.8967 |
| DBH2H.m3 | 0.3995445 | 0.014504636 | 27.545990 | 0.0000 |
| DBH2H.m3.splinepoints | -0.0003458 | 0.000103002 | -3.357631 | 0.0018 |

Plot of Model 10

P_roxburghii:Model 10: (Volume~dbh^2*H), Cubic Spline with varFixed

$$
\begin{aligned}
& \hat{\beta}_{0}=0.00346 \\
& \hat{\beta}_{1}=0.39954 \\
& \hat{\beta}_{2}=-0.00035 \\
& A / C=21 \\
& B I C=28 \\
& \hat{\sigma}=0.09
\end{aligned}
$$

7.11 Model 11- Volume with square of diameter at breast height * height (DBH2H) as predictor, with varPower

```
> pr.m11 <- gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints,
    na.action=na.omit, weights = varPower(form =
    ~DBH2H.m3))
```

> summary(pr.m11)
Generalized least squares fit by REML
Model: Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints
Data: NULL
AIC BIC logLik
$13.2090521 .26364-1.604523$

```
Variance function:
    Structure: Power of variance covariate
    Formula: ~DBH2H.m3
    Parameter estimates:
        power
0.8935963
```

Coefficients:

| (Intercept) | -0.0050467 | 0.009373344 | -0.53841 | 0.5935 |
| :--- | ---: | :--- | :--- | :--- |
| DBH2H.m3 | 0.4076275 | 0.011226478 | 36.30947 | 0.0000 |
| DBH2H.m3.splinepoints | -0.0004080 | 0.000102107 | -3.99543 | 0.0003 |

Plot of Model 11

P_roxburghii:Model 11: (Volume ~ dbh^2* H), Cubic Spline with varPower

Theoretical Quantiles
7.12 Model 12 -Volume with square of diameter at breast height * height (DBH 2 H) as predictor, with varConstPower

```
> pr.m12 <- gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints,
    na.action=na.omit, weights = varConstPower(form =
    ~DBH2H.m3))
```

> summary(pr.m12)
Generalized least squares fit by REML
Model: Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints
Data: NULL
AIC BIC logLik
$15.2090524 .87455-1.604523$
Variance function:
Structure: Constant plus power of variance covariate
Formula: ~DBH2H.m3
Parameter estimates:
const power
$6.110951 e-108.935965 e-01$
Coefficients:

| | Value | Std.Error | t-value | p-value |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | -0.0050467 | 0.009373340 | -0.53841 | 0.5935 |
| DBH2H.m3 | 0.4076275 | 0.011226477 | 36.30947 | 0.0000 |
| DBH2H.m3.splinepoints | -0.0004080 | 0.000102107 | -3.99543 | 0.0003 |

Plot of Model 12

P_roxburghii:Model 12: (Volume $\sim \mathrm{dbh}^{\wedge} 2^{*} \mathrm{H}$), Cubic Spline with varConstPower

7.13 Model 13 - Volume with basal area * height (BAH) as predictor

```
> pr.m13 <- gls(Volume.m3 ~ BAH.m3)
> summary(pr.m13)
```

Generalized least squares fit by REML
Model: Volume.m3 ~ BAH.m3
Data: NULL
AIC BIC logLik
37.5543242 .46708 -15.77716

Coefficients:

| | Value | Std.Error | t-value | p-value |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 0.1711651 | 0.07709398 | 2.22021 | 0.0324 |
| BAH.m3 | 0.4327352 | 0.00923247 | 46.87102 | 0.0000 |

Plot of Model 13

7.14 Model 14 - Volume with basal area * height (BAH) as predictor, with varFixed

```
> pr.m14 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints,
    na.action=na.omit, weights = varFixed(~BAH.m3))
> summary(pr.m14)
Generalized least squares fit by REML
    Model: Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints
    Data: NULL
        AIC BIC logLik
    19.41066 25.85433-5.705328
Variance function:
    Structure: fixed weights
    Formula: ~BAH.m3
```

Coefficients:

| (Intercept) | 0.0034553 | 0.026436113 | 0.130705 | 0.8967 |
| :--- | ---: | ---: | ---: | ---: |
| BAH.m3 | 0.5087159 | 0.018467876 | 27.545990 | 0.0000 |
| BAH.m3.splinepoints | -0.0007139 | 0.000212606 | -3.357631 | 0.0018 |

Plot of Model 14

P_roxburghii:Model 14: (Volume ~ BAH), Cubic spline with varFixed

$$
\begin{aligned}
& \hat{\beta}_{0}=0.00346 \\
& \hat{\beta}_{1}=0.50872 \\
& \hat{\beta}_{2}=-0.00071 \\
& A / C=19 \\
& B I C=26 \\
& \hat{\sigma}=0.11
\end{aligned}
$$

```
7.15 Model 15- Volume with basal area * height (BAH) as predictor, with varPower
> pr.m15 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints,
    na.action=na.omit, weights = varPower(form =
    ~BAH.m3))
> summary(pr.m15)
Generalized least squares fit by REML
    Model: Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints
    Data: NULL
        AIC BIC logLik
    11.27653 19.33112 -0.6382652
Variance function:
    Structure: Power of variance covariate
    Formula: ~BAH.m3
    Parameter estimates:
        power
0.8935963
```

Coefficients:

| | Value | Std.Error | t-value | p-value |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | -0.0050467 | 0.009373344 | -0.53841 | 0.5935 |
| BAH.m3 | 0.5190074 | 0.014293996 | 36.30947 | 0.0000 |
| BAH.m3.splinepoints | -0.0008421 | 0.000210759 | -3.99543 | 0.0003 |

Plot of Model 15


```
7.16 Model 16 - Volume with basal area * height (BAH) as predictor, with varConstPower
> pr.m16 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints,
    na.action=na.omit, weights = varConstPower(form =
    ~BAH.m3))
> summary(pr.m16)
Generalized least squares fit by REML
    Model: Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints
    Data: NULL
        AIC BIC logLik
    13.27653 22.94204 -0.6382652
Variance function:
    Structure: Constant plus power of variance covariate
    Formula: ~BAH.m3
    Parameter estimates:
        const power
5.136601e-10 8.935965e-01
Coefficients:
\begin{tabular}{lrrrr} 
& Value & Std.Error & t-value & p-value \\
(Intercept) & -0.0050467 & 0.009373340 & -0.53841 & 0.5935 \\
BAH.m3 & 0.5190074 & 0.014293995 & 36.30947 & 0.0000 \\
BAH.m3.splinepoints & -0.0008421 & 0.000210759 & -3.99543 & 0.0003
\end{tabular}
```


Plot of Model 16

P_roxburghii:Model 16: (Volume ~ BAH), Cubic spline with varConstPower

| $\hat{\beta}_{0}=-0.00505$ |
| :--- |
| $\hat{\beta}_{1}=0.51901$ |
| $\hat{\beta}_{2}=-0.00084$ |
| $A / C=13$ |
| $B I C=23$ |
| $\hat{\sigma}=0.06$ |
| |

8. Model evaluation using AIC and BIC values

| SN | Model | AIC | BIC |
| :---: | :---: | :---: | :---: |
| 1 | Model 1
 > pr.m1 <- gls(Volume.m3 ~ DBH.cm) | 95 | 100 |
| 2 | ```Model 2 > pr.m2 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints, na.action=na.omit, weights \(=\operatorname{varFixed}(\sim\) DBH.cm))``` | 75 | 81 |
| 3 | ```Model 3 > pr.m3 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints, na.action=na.omit, weights = varPower(form = ~DBH.cm))``` | 56 | 64 |
| 4 | ```Model 4 > pr.m4 <- gls(Volume.m3 ~ DBH.cm + DBH.cm.splinepoints, na.action=na.omit, weights = varConstPower(form = ~DBH.cm))``` | 58 | 68 |
| 5 | $\begin{aligned} & \text { Model } 5 \\ & >\text { pr.m5 <- gls(Volume.m3 ~BA.m2) } \end{aligned}$ | 58 | 62 |
| 6 | ```Model 6 > pr.m6<- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints, na.action=na.omit, weights = varFixed(~BA.m2))``` | 22 | 28 |
| 7 | Model 7 $\begin{aligned} >\text { pr.m7 <- } & \text { gls(Volume.m3 ~ BA.m2 }+ \text { BA.m2.splinepoints, } \\ & \text { na.action=na.omit, weights }=\text { varPower(form }=\sim \text { BA.m2)) } \end{aligned}$ | 9 | 17 |
| 8 | ```Model } > pr.m8 <- gls(Volume.m3 ~ BA.m2 + BA.m2.splinepoints, na.action=na.omit, weights = varConstPower(form = ~BA.m2))``` | 11 | 21 |
| 9 | ```Model 9 > pr.m9 <- gls(Volume.m3 ~ DBH2H.m3)``` | 38 | 43 |
| 10 | $\begin{aligned} & \text { Model 10 } \\ & >\text { pr.m10 <-gls(Volume.m3 ~ DBH2H.m3 }+ \text { DBH2H.m3.splinepoints, } \\ & \\ & \quad \text { na.action=na.omit, weights }=\operatorname{varFixed(\sim DBH2H.m3))~} \end{aligned}$ | 21 | 28 |

Merchantable_volume_equation_Pinus roxburghii: 24

| 11 | ```Model 11 > pr.m11 <-gls(Volume.m3 ~ DBH2H.m3 + DBH2H.m3.splinepoints, na.action=na.omit, weights = varPower(form = ~DBH2H.m3))``` | 13 | 21 |
| :---: | :---: | :---: | :---: |
| 12 | $\begin{array}{\|rl} \hline \begin{array}{l} \text { Model } 12 \\ > \end{array} & \text { pr.m12 <- gls(Volume.m3 ~ DBH2H.m3 }+ \text { DBH2H.m3.splinepoints, } \\ & \text { na.action=na.omit, weights }=\text { varConstPower(form }=\sim \text { DBH2H.m3)) } \end{array}$ | 15 | 25 |
| 13 | Model 13
 > pr.m13 <- gls(Volume.m3 ~ BAH.m3) | 38 | 42 |
| 14 | ```Model 14 \(>\) pr.m14 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints, na.action=na.omit, weights \(=\) varFixed(~BAH.m3))``` | 19 | 26 |
| 15 | $\begin{array}{\|l} \hline \begin{array}{l} \text { Model } 15 \\ > \end{array} \text { pr.m15 <- gls(Volume.m3 } \sim \text { BAH.m3 }+ \text { BAH.m3.splinepoints, na.action=na.omit, } \\ \\ \text { weights }=\text { varPower(form }=\sim \text { BAH.m3) }) \end{array}$ | 11 | 19 |
| 16 | $\begin{array}{\|l} \hline \begin{array}{l} \text { Model } 16 \\ > \end{array} \text { pr.m16 <- gls(Volume.m3~ BAH.m3 + BAH.m3.splinepoints, na.action=na.omit, } \\ \\ \text { weights }=\text { varConstPower (form }=\sim \text { BAH.m3)) } \end{array}$ | 13 | 23 |

9. Selected Models

The best fitting models have been selected based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values of the fitted models. The BIC value was mainly relied upon as it imposes a stronger penalty for the number of parameters in the model that need to be estimated. Smaller the values of AIC and BIC, better the fit of the model. Therefore, for Pinus roxburgbii, the selected models are;

1. Model 7 (Model which doesn't use height)

$$
\begin{aligned}
& \text { pr.m7 }<- \text { gls }(V o l u m e . m 3 \sim \text { BA.m2 }+ \text { BA.m2.splinepoints, } \\
& \text { na.action=na.omit, weights }= \\
& \operatorname{varPower(form~}=\sim \text { BA.m2)) }
\end{aligned}
$$

2. Model 15 (Model which uses the height)
pr.m15 <- gls(Volume.m3 ~ BAH.m3 + BAH.m3.splinepoints, na.action=na.omit, weights $=\operatorname{varPower(form~}=\sim$ BAH.m3))

Two models have been selected for Pinus roxburgbii, one without height ($\mathrm{X}_{1}=\mathrm{BA}$ which is model $7)$ and one with the height $\left(\mathrm{X}_{1}=\mathrm{BAH}\right.$, which is Model 15) as predictor or explanatory variable. Both the models have been fitted with natural (restricted) cubic spline function within a linear model framework. Although, nonlinear models are more flexible, they are more complicated than the linear models. The complications involved and amount of time and efforts spent on fitting nonlinear models often fail to justify by the improvements in the models. Moreover, the models fitted with natural (restricted) cubic spline functions perform well and track the curvilinearity better than nonlinear functions that were examined.

10. Demonstration of use of the selected best fit model

In general, the natural spline predictor with knots represented by $\mathrm{t} 1, \mathrm{t} 2$ and t 3 takes the following form;

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X+\beta_{2} X_{s}+\varepsilon \tag{8}
\end{equation*}
$$

Where X_{s} corresponds to value in X as follows:

$$
\begin{equation*}
\mathrm{Xs}=\mathrm{g}(\mathrm{X})=(X-t 1)_{+}^{3}-(X-t 2)_{+}^{3} \frac{(t 3-t 1)}{(t 3-t 2)}+(X-t 3)_{+}^{3} \frac{(t 2-t 1)}{(t 3-t 2)} \tag{9}
\end{equation*}
$$

and the value of the positive part functions depend on the values of the knots as follows;

$$
\begin{align*}
& (X-t 1)_{+}^{3}=(X-t 1)_{+}^{3}, \text { if } \mathrm{X}>\mathrm{t} 1 \text { and }(X-t 1)_{+}^{3}=0, \text { if } \mathrm{X}<\mathrm{t} 1 \tag{10}\\
& (X-t 2)_{+}^{3}=(X-t 2)_{+}^{3}, \text { if } \mathrm{X}>\mathrm{t} 2, \text { and }(X-t 2)_{+}^{3}=0, \text { if } \mathrm{X}<\mathrm{t} 2 \tag{11}\\
& (X-t 3)_{+}^{3}=(X-t 3)_{+}^{3}, \text { if } \mathrm{X}>\mathrm{t} 3 \text {, and }(X-t 3)_{+}^{3}=0, \text { if } \mathrm{X}<\mathrm{t} 3 \tag{12}
\end{align*}
$$

Where $\mathrm{t} 1, \mathrm{t} 2$ and t 3 for the above models are $10^{\mathrm{th}}, 50^{\text {th }}$ and $90^{\text {th }}$ percentiles and are called knots. The values of knots differ from species and models.

To demonstrate use of the selected models for Pinus roxburghii - model 7, the knots t 1 , t 2 and t 3 are $0.029,0.166$ and 0.421 as generated by the model. The model 7 has been fitted with volume as function of basal area in meter square (BA) i.e

$$
\begin{equation*}
B A=\pi r^{2} \tag{13}
\end{equation*}
$$

where in

$$
\begin{equation*}
\mathrm{r}^{2}=\left[\frac{d b h}{2 * 100}\right]^{2} \tag{14}
\end{equation*}
$$

Where r is radius in meters and dbh is diameter at breast height in centimeters.
Therefore, Pinus roxburghii with diameter of 37 cm resulting in basal area of $0.107521009 \mathrm{~m}^{2}$, the volume can be estimated using the above equation (model 7) as below. But first the value of BA.m2 has to be calculated, which is;

$$
\begin{aligned}
\mathrm{BA} & =\pi r^{2}=\frac{\pi * 37^{2}}{200^{2}}=0.107521009 \mathrm{~m}^{2} \\
\mathrm{~g}(\mathrm{X}) & =(X-t 1)_{+}^{3}-(X-t 2)_{+}^{3} \frac{(t 33-t 1)}{(t 3-t 2)}+(X-t 3)_{+}^{3} \frac{(t 2-t 1)}{(t 3-t 2)} \\
\mathrm{g}(\mathrm{BA}) & =(B A-t 1)_{+}^{3}-(B A-t 2)_{+}^{3} \frac{(t 3-t 1)}{(t 3-t 2)}+(B A-t 3)_{+}^{3} \frac{(t 2-t 1)}{(t 3-t 2)} \\
\mathrm{g}(\mathrm{BA}) & =(0.107521009-0.029)_{+}^{3}-0+0 \\
& =(0.078521009)_{+}^{3}-0+0 \\
& =0.000484125
\end{aligned}
$$

Hence, the volume predicted for this tree by the selected model (model 7) is

$$
\begin{aligned}
\mathrm{V} & =\beta_{0}+\beta_{1} \cdot B A+\beta_{2} B A \cdot m_{2}+\varepsilon \\
& =-0.151034+14.256793 * 0.107521009+27.635236 * 0.000484125 \\
& =-0.151034+1.532905+0.0133789 \\
& =1.39525 \mathrm{~m}^{3}
\end{aligned}
$$

Similarly, to demonstrate model 15 with t 1 , t 2 and t 3 of $0.383,4.541$, and 14.432 respectively, we considered this same tree but with height, i.e $\mathrm{dbh}=37 \mathrm{~cm}$ resulting in $\mathrm{BA}=0.107521009 \mathrm{~m}^{2}$ and height $(H)=22.6 \mathrm{~m}$.

$$
\begin{aligned}
\text { BAH } & =0.107521009 \times 22.6 \\
& =2.4299748
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{g}(\mathrm{X}) & =(X-t 1)_{+}^{3}-(X-t 2)_{+}^{3} \frac{(t 3-t 1)}{(t 3-t 2)}+(X-t 3)_{+}^{3} \frac{(t 2-t 1)}{(t 3-t 2)} \\
\mathrm{g}(\mathrm{BAH}) & =(B A H-t 1)_{+}^{3}-(B A H-t 2)_{+}^{3} \frac{(t 3-t 1)}{(t 3-t 2)}+(B A H-t 3)_{+}^{3} \frac{(t 2-t 1)}{(t 3-t 2)} \\
& =(2.4299748-0.383)_{+}^{3}-0+0 \\
& =(2.0469748)_{+}^{3} \\
& =8.5770411
\end{aligned}
$$

Hence, the volume predicted by model 15 for this tree is;

$$
\begin{aligned}
\mathrm{V} & =\beta_{0}+\beta_{1} \cdot \text { BAH. } \mathrm{m} 3+\beta_{2} \text { BAH. } \mathrm{m3}_{2}+\varepsilon \\
& =-0.0050467+0.5190074 * 2.4299748+(-0.0008421 * 8.5770411) \\
& =-0.0050467+1.261175+(-0.007223) \\
& =-0.0050467+3.05-0.24 \\
& =1.248905 \mathrm{~m}^{3}
\end{aligned}
$$

The field measured volume for this particular tree with DBH of 37 cm and height of 22.6 m is $1.248905 \mathrm{~m}^{3}$.

11. Model Performance

To assess the performance of selected models, we compared the volume predicted by selected models (7 and 15) with the volume of the tree as measured in the field. Using the equations of the selected models, volume prediction or estimation was done in R.

| SN | Tree_ID | Height (in m) | $\begin{gathered} \text { DBH } \\ \text { (in } \\ \mathrm{cm}) \end{gathered}$ | Volume in m^{3}
 (Field measured)
 [A] | Predicted Volume Model_7 [B] | Predicted Volume Model_15 [C] | ```Difference (Field - Model_7) [A - B]``` | ```Difference (Field - Model_15) [A - C]``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | prwc01 | 22.6 | 37 | 1.44194091 | 1.3952497 | 1.24890548 | 0.046691215 | 0.193035433 |
| 2 | prwc02 | 24.5 | 46 | 2.44209044 | 2.28966239 | 2.06591165 | 0.152428049 | 0.376178786 |
| 3 | prwc03 | 21.6 | 26.6 | 0.71573194 | 0.64175769 | 0.61748262 | 0.073974251 | 0.098249324 |
| 4 | prwc04 | 26.7 | 55.4 | 3.46151755 | 3.53112799 | 3.1566981 | -0.069610443 | 0.304819448 |
| 5 | prwc05 | 13.5 | 19 | 0.20855421 | 0.253187 | 0.19361054 | -0.044632789 | 0.014943665 |
| 6 | prwc07 | 25.6 | 75.5 | 5.37867069 | 7.31077405 | 5.19481935 | -1.932103363 | 0.183851342 |
| 7 | prwc08 | 30.5 | 68.5 | 5.76694296 | 5.83174951 | 5.11053589 | -0.064806545 | 0.656407068 |
| 8 | pre01 | 37.47 | 77.8 | 7.74458705 | 7.82887469 | 7.56335923 | -0.084287642 | 0.18122782 |
| 9 | pre02 | 36.9 | 57.4 | 4.17151 | 3.83950579 | 4.45254103 | 0.332004212 | -0.281031031 |
| 10 | pre04 | 39.4 | 62 | 5.32993392 | 4.60825257 | 5.35956346 | 0.721681354 | -0.029629538 |
| 11 | pre05 | 23.94 | 32.5 | 1.03642439 | 1.0360178 | 1.02223685 | 0.000406587 | 0.014187537 |
| 12 | pre06 | 37.1 | 68.5 | 5.52193416 | 5.83174951 | 6.0253215 | -0.309815345 | -0.50338734 |
| 13 | pre07 | 27.9 | 47.8 | 2.4487711 | 2.50136966 | 2.51033927 | -0.052598561 | -0.061568169 |
| 14 | pre08 | 36.8 | 59.8 | 4.88744858 | 4.23029148 | 4.76178767 | 0.657157097 | 0.125660906 |
| 15 | pre09 | 29.4 | 39.7 | 2.01845706 | 1.63728868 | 1.85470231 | 0.381168381 | 0.163754753 |
| 16 | pre10 | 40.41 | 67.4 | 6.17483323 | 5.61387297 | 6.30233394 | 0.560960257 | -0.127500706 |
| 17 | pre11 | 37.63 | 76.2 | 7.05233304 | 7.46681108 | 7.32112577 | -0.414478037 | -0.268792728 |
| 18 | pre13 | 13.16 | 19.2 | 0.19286857 | 0.26174179 | 0.19270571 | -0.068873217 | 0.000162863 |
| 19 | pre15 | 21.18 | 27.8 | 0.63296676 | 0.71521516 | 0.66156931 | -0.082248397 | -0.028602555 |
| 20 | pre16 | 23.1 | 52.2 | 2.69780269 | 3.07033907 | 2.48091546 | -0.372536379 | 0.216887231 |
| 21 | pre17 | 25.8 | 40.9 | 1.53357203 | 1.75171232 | 1.73132371 | -0.218140285 | -0.197751679 |
| 22 | pre18 | 19.9 | 23 | 0.38040394 | 0.44135556 | 0.4239932 | -0.060951616 | -0.043589255 |
| 23 | pre20 | 34.79 | 73 | 6.41142965 | 6.76525424 | 6.35551419 | -0.353824588 | 0.055915458 |
| 24 | pre21 | 31.12 | 50 | 2.93531604 | 2.77661313 | 3.01270775 | 0.158702906 | -0.077391711 |
| 25 | pre22 | 27.8 | 36.2 | 1.46389068 | 1.32746262 | 1.46713261 | 0.136428063 | -0.003241929 |
| 26 | pre23 | 41.9 | 65.3 | 5.76794377 | 5.20993671 | 6.15914711 | 0.558007063 | -0.391203339 |
| 27 | pre24 | 28.65 | 54.6 | 2.86230545 | 3.41217602 | 3.27559048 | -0.549870567 | -0.413285033 |
| 28 | pre28 | 13.99 | 16.8 | 0.17214775 | 0.16499747 | 0.15590653 | 0.007150279 | 0.016241225 |
| 29 | pre29 | 19.8 | 27.4 | 0.65572133 | 0.69035489 | 0.60048688 | -0.034633563 | 0.05523445 |
| 30 | pre31 | 28.83 | 34.4 | 1.50378403 | 1.18122924 | 1.37542717 | 0.322554789 | 0.128356862 |
| 31 | pre33 | 24.9 | 46 | 1.66008246 | 2.28966239 | 2.09808681 | -0.629579931 | -0.438004345 |
| 32 | pre34 | 10.85 | 14.1 | 0.08248901 | 0.07157869 | 0.08288213 | 0.010910316 | -0.000393122 |
| 33 | pre35 | 17.86 | 29.1 | 0.6003979 | 0.79861936 | 0.61101114 | -0.198221461 | -0.010613242 |

| $\mathbf{3 4}$ | prec01 | 25.1 | 31.5 | 0.90735332 | 0.96325156 | 1.00689083 | -0.055898237 | -0.099537511 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{3 5}$ | prec02 | 34.7 | 64.4 | 5.12929119 | 5.0417728 | 5.1345332 | 0.087518388 | -0.005242014 |
| $\mathbf{3 6}$ | prec03 | 26.1 | 28.5 | 0.82236773 | 0.75962748 | 0.8573379 | 0.062740246 | -0.034970172 |
| $\mathbf{3 7}$ | prec04 | 17.65 | 15 | 0.12872634 | 0.10090435 | 0.15683233 | 0.027821993 | -0.028105991 |
| $\mathbf{3 8}$ | prec05 | 33.65 | 44.3 | 2.36971765 | 2.10056515 | 2.59381777 | 0.269152499 | -0.224100122 |
| $\mathbf{3 9}$ | prec07 | 37.32 | 75.3 | 8.27102878 | 7.26645654 | 7.12017092 | 1.004572239 | 1.150857856 |
| $\mathbf{4 0}$ | prec08 | 37.8 | 54 | 3.40957869 | 3.32460808 | 4.09442932 | 0.084970613 | -0.684850634 |
| | | | | 116.392867 | 116.332977 | 116.409687 | 0.059889831 | -0.016820141 |

From the above table, the difference [A-B] provides difference between the volume measured in the field (actual volume) and the volume predicted by model 7. The figures with negative (-) indicates that the volume has been over-predicted by the model 7 vis-à-vis actual volume of the particular tree. And the figures without negative (-) sign indicates the under prediction of volume by the model 7 .

Similarly, the difference [A-C] is the difference between the actual volume and the volume predicted by the model 15. Same explanation is applicable here - the figures with negative sign indicates overprediction of volume by the model and vice-versa, while those figures without (-) are under prediction of volume by the model 15 .

Summation of the figures in the difference column results in 0.059889831 and -0.016820141 for model 7 and model 15 respectively. These indicate that the model 7 under predicts total volume for 40 trees by only $0.059889831 \mathrm{~m}^{3}$, while the model 15 over predicts the total volume of 40 trees by $0.016820141 \mathrm{~m}^{3}$. Therefore, looking this, one may be inclined to conclude that overall, model 15 predicts better than model 7, despite model 7 having lower AIC and BIC than model 15.

12. Limitations of the model

The model has the following limitations;

1. The modeling has been done based on only 40 sample trees. The model can be further improved by increasing the number of samples.
2. The diameter for the sample trees ranges between minimum of 14 cm to 77 cm (over bark). Thus, the model prediction for trees above 77 cm must be done with caution, since there were no trees above 77 cm diameter at breast height in the sample.

13. Conclusion

The model 15 that uses the height seems to perform slightly better than the model 7 that doesn't use the height, as empirically shown above. This further reinforces and confirms the observations made by Professor Timothy Gordon Gregoire and Mr. Yograj Chettri while modeling conifer species for biomass estimation. They too observed that in conifers, the models fitted with height as predictors predicted the biomass better than those models that didn't use height as predictor variable.

However, since two models are fitted using different predictors (one with and other without height), it leads us to confidently conclude that Pinus roxburgbii has two best models, which are;

1. Model 7 - the best fit model which does not use height as a predictor
2. Model 15 - the best fit model which uses height as a predictor

14. Acknowledgement

We would like to express our heartfelt gratitude to the biomass equation development team led by Mr. Yograj Chettri, Research Officer at UWICER, formerly RDC who collected data (diameter and height) for developing merchantable volume equation for Pinus roxburgbii, as part of the field work for developing biomass equation under the projects managed by FRMD.

Immense gratitude is also due to Professor Timothy Gordon Gregoire, School of Forestry and Environmental Studies (FES), Yale University who has been a guide and mentor as we worked on this assignment.

Thanks are also due to our Director, Mr. Lobzang Dorji and other colleagues working in FRMD for their support and advice.

Had it not been for the immense support, guidance and encouragement that the abovementioned people have generously provided to us, this task would have remained incomplete.

15. References

1. Lee, D., Seo, Y., \& Choi, J. (2017). Estimation and validation of stem volume equations for Pinus densiflora, Pinus koraiensis, and Larix kaempferi in South Korea. Forest Science and Technology, 13(2), 7782.
2. Umunay, P., Gregoire, T., \& Ashton, M. (2017). Estimating biomass and carbon for Gilbertiodendron dewevrei (De Wild) Leonard, a dominant canopy tree of African tropical Rainforest: Implications for policies on carbon sequestration. Forest Ecology and Management, 404, 31-44.
3. White, J. C., Coops, N. C., Wulder, M. A., Vastaranta, M., Hilker, T., \& Tompalski, P. (2016). Remote sensing technologies for enhancing forest inventories: A review. Canadian Journal of Remote Sensing, 42(5), 619-641.
4. Mohammadi, J., Shataee, S., \& Babanezhad, M. (2011). Estimation of forest stand volume, tree density and biodiversity using Landsat ETM + Data, comparison of linear and regression tree analyses. Procedia Environmental Sciences, 7, 299-304.
5. Fagan, M., \& DeFries, R. (2009). Measurement and Monitoring of the World's Forests. Resources for the Future, 129.
6. Feng, Z. K., Yang, B.G., Luo, X., Han, G.S., Guo, X.X.,. (2008). Experiment of estimating forest stand volume with LiDAR technology. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences., XXXVII.
7. McRoberts, R. E., \& Tomppo, E. O. (2007). Remote sensing support for national forest inventories. Remote Sensing of Environment, 110(4), 412-419.
8. Westfall, J. A., \& Patterson, P. L. (2007). Measurement variability error for estimates of volume change. Canadian Journal of Forest Research, 37(11), 2201-2210.
9. Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297-1328.
10. Sadiq, R. A. (2006). A new approach to \log volume estimation. Southern Journal of Applied Forestry, 30(1), 30-39.
11. Hyyppä, J., Mielonen, T., Hyyppä, H., Maltamo, M., Yu, X., Honkavaara, E., \& Kaartinen, H. (2005). Using individual tree crown approach for forest volume extraction with aerial images and laser point clouds.
12. Patterson, D. W., \& Doruska, P. F. (2004). A new and improved modification to Smalian's equation for butt logs. Forest Products Journal, 54(4), 69.
13. Eerikäinen, K. (2001). Stem volume models with random coefficients for Pinus kesiya in Tanzania, Zambia, and Zimbabwe. Canadian Journal of Forest Research, 31(5), 879-888.
14. Gregoire, T. G., \& Schabenberger, O. (1996). Nonlinear mixed-effects modeling of cumulative bole volume with spatially correlated within-tree data. Journal of Agricultural, Biological, and Environmental Statistics, 107-119.
15. Bi, H. (1994). Volume equations for six Eucalyptus species on the south-east tablelands of New South Wales: Research Division State Forests of New South Wales.
16. Laumans, P. (1994). Height-diameter functions from PIS for country-level site classification and local volume table selection. Thimphu.
17. Biging, G. S. (1988). Estimating the accuracy of volume equations using taper equations of stem profile. Canadian Journal of Forest Research, 18(8), 1002-1007.
18. Reed, D. D., \& Byrne, J. C. (1985). A simple, variable form volume estimation system. The Forestry Chronicle, 61(2), 87-90.
19. Avery, T.E., and Burkhart, H.E. (1983). Forest Measurements, Third Edition. McGraw-Hill, Inc.
20. Sadiq, R. A., \& Smith, V. G. (1983). Estimation of individual tree volumes with age and diameter. Canadian Journal of Forest Research, 13(1), 32-39.
21. Cochran, P. (1982). Estimating wood volumes for Douglas-fir and white fir from outside bark measurements. Forest Science, 28(1), 172-174.
22. Bredenkamp, B. (1982). Volume regression equations for Eucalyptus grandis on the coastal plain of Zululand. South African Forestry Journal, 122(1), 66-69.
23. Cao, Q. v., \& Burkhart, H. E. (1980). Cubic-foot volume of loblolly pine to any height limit. Southern Journal of Applied Forestry, 4(4), 166-168.
24. Cao, Q. V., Burkhart, H. E., \& Max, T. A. (1980). Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit. Forest Science, 26(1), 71-80.
25. Goulding, C. (1979). Cubic spline curves and calculation of volume of sectionally measured trees. NZJ For. Sci, 9(1), 89-99.
26. Burkhart, H. E. (1977). Cubic-foot volume of loblolly pine to any merchantable top limit. Southern Journal of Applied Forestry, 1(2), 7-9.
27. Heger, L. (1965). A trial of Hohenadl's method of stem form and stem volume estimation. The Forestry Chronicle, 41(4), 466-475.

16. Annexure - Dataset for Pinus roxburghii

| SN | Tree ID | Height.m | DBH.cm | Volume.m3 | BA.m2 | BAH.m3 | DBH2H.m3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | prwc01 | 22.6 | 37 | 1.44194091 | 0.10752101 | 2.4299748 | 3.09394 |
| 2 | prwc02 | 24.5 | 46 | 2.44209044 | 0.16619025 | 4.0716612 | 5.1842 |
| 3 | prwc03 | 21.6 | 26.6 | 0.71573194 | 0.05557163 | 1.2003473 | 1.5283296 |
| 4 | prwc04 | 26.7 | 55.4 | 3.46151755 | 0.24105126 | 6.4360687 | 8.1946572 |
| 5 | prwc05 | 13.5 | 19 | 0.20855421 | 0.02835287 | 0.3827638 | 0.48735 |
| 6 | prwc07 | 25.6 | 75.5 | 5.37867069 | 0.44769659 | 11.4610327 | 14.59264 |
| 7 | prwc08 | 30.5 | 68.5 | 5.76694296 | 0.36852845 | 11.2401178 | 14.3113625 |
| 8 | pre01 | 37.47 | 77.8 | 7.74458705 | 0.47538894 | 17.8128237 | 22.6799915 |
| 9 | pre02 | 36.9 | 57.4 | 4.17151 | 0.25876985 | 9.5486073 | 12.1576644 |
| 10 | pre04 | 39.4 | 62 | 5.32993392 | 0.30190705 | 11.8951379 | 15.14536 |
| 11 | pre05 | 23.94 | 32.5 | 1.03642439 | 0.08295768 | 1.9860069 | 2.5286625 |
| 12 | pre06 | 37.1 | 68.5 | 5.52193416 | 0.36852845 | 13.6724056 | 17.4082475 |
| 13 | pre07 | 27.9 | 47.8 | 2.4487711 | 0.17945091 | 5.0066805 | 6.3747036 |
| 14 | pre08 | 36.8 | 59.8 | 4.88744858 | 0.28086152 | 10.3357041 | 13.1598272 |
| 15 | pre09 | 29.4 | 39.7 | 2.01845706 | 0.12378582 | 3.6393031 | 4.6337046 |
| 16 | pre10 | 40.41 | 67.4 | 6.17483323 | 0.35678754 | 14.4177843 | 18.3572932 |
| 17 | pre11 | 37.63 | 76.2 | 7.05233304 | 0.45603673 | 17.1606622 | 21.8496337 |
| 18 | pre13 | 13.16 | 19.2 | 0.19286857 | 0.02895292 | 0.3810204 | 0.4851302 |
| 19 | pre15 | 21.18 | 27.8 | 0.63296676 | 0.06069871 | 1.2855987 | 1.6368751 |
| 20 | pre16 | 23.1 | 52.2 | 2.69780269 | 0.21400843 | 4.9435948 | 6.2943804 |
| 21 | pre17 | 25.8 | 40.9 | 1.53357203 | 0.13138219 | 3.3896605 | 4.3158498 |
| 22 | pre18 | 19.9 | 23 | 0.38040394 | 0.04154756 | 0.8267965 | 1.05271 |
| 23 | pre20 | 34.79 | 73 | 6.41142965 | 0.41853868 | 14.5609607 | 18.539591 |
| 24 | pre21 | 31.12 | 50 | 2.93531604 | 0.19634954 | 6.1103977 | 7.78 |
| 25 | pre22 | 27.8 | 36.2 | 1.46389068 | 0.10292172 | 2.8612237 | 3.6430232 |
| 26 | pre23 | 41.9 | 65.3 | 5.76794377 | 0.33490085 | 14.0323454 | 17.8665371 |
| 27 | pre24 | 28.65 | 54.6 | 2.86230545 | 0.23413976 | 6.7081041 | 8.5410234 |
| 28 | pre28 | 13.99 | 16.8 | 0.17214775 | 0.02216708 | 0.3101174 | 0.3948538 |
| 29 | pre29 | 19.8 | 27.4 | 0.65572133 | 0.05896455 | 1.1674981 | 1.4865048 |
| 30 | pre31 | 28.83 | 34.4 | 1.50378403 | 0.09294088 | 2.6794855 | 3.4116269 |
| 31 | pre33 | 24.9 | 46 | 1.66008246 | 0.16619025 | 4.1381373 | 5.26884 |
| 32 | pre34 | 10.85 | 14.1 | 0.08248901 | 0.0156145 | 0.1694173 | 0.2157088 |
| 33 | pre35 | 17.86 | 29.1 | 0.6003979 | 0.0665083 | 1.1878383 | 1.5124027 |
| 34 | prec01 | 25.1 | 31.5 | 0.90735332 | 0.07793113 | 1.9560714 | 2.4905475 |
| 35 | prec02 | 34.7 | 64.4 | 5.12929119 | 0.32573289 | 11.3029314 | 14.3913392 |
| 36 | prec03 | 26.1 | 28.5 | 0.82236773 | 0.06379397 | 1.6650225 | 2.1199725 |
| 37 | prec04 | 17.65 | 15 | 0.12872634 | 0.01767146 | 0.3119012 | 0.397125 |
| 38 | prec05 | 33.65 | 44.3 | 2.36971765 | 0.1541336 | 5.1865958 | 6.6037788 |
| 39 | prec07 | 37.32 | 75.3 | 8.27102878 | 0.44532783 | 16.6196345 | 21.1607759 |
| 40 | prec08 | 37.8 | 54 | 3.40957869 | 0.2290221 | 8.6570355 | 11.02248 |

